Аксон представляет собой центральный дендрит

НЕРВНАЯ ТКАНЬ

Собственно нервную ткань составляют нервные клетки (нейроны) с их от­ростками и клетки глии. Сосуды и оболочки мозга имеют мезодермальное происхождение. Неврология изучает данные структуры организма.

2.5.1. Историческая справка

Успехи оптики, приведшие к созданию светового микроскопа, и достиже­ния химии, позволившие получить анилиновые и другие красители, привели к возникновению и развитию гистологии. Это позволило во второй полови­не XVIII в. обнаружить в мозге нервные волокна (Монро А., 1787; Фонтан Ф., 1781; Рейли И., 1796); в 30-х годах XIX в. были описаны и нервные клетки (ЭрснбергХ., в 1833; Пуркинье Я., Шванн Т., в 1838). В 1865 г. О. ДеИтере (1834-1863) и в 1867 г. А.Я. Кожевников доказали, что нервные волокна явля­ются отростками нервных клеток. О. Дейтерс отметил, что один из отростков обычно длинный, остальные — короткие. Эти отростки получили название со­ответственно аксон (нейрит) и дендриты. В 1887 г. испанский нейроморфолог С. Рамон-и-Кахаль (S. Ramon у Cajal, 1852—1934) сформулировал положения:

  • 1) концевые разветвления длинного отростка нервной клетки — аксона сво­бодно оканчиваются в сером веществе мозга и не образуют сетей;
  • 2) между отростками нервных клеток существуют контакты;
  • 3) в местах контакта во­локон или волокна и тела клетки передача нервного импульса происходит по принципу электрических проводников, возможно через индукцию1.

В 1891 г. С. Рамон-и-Кахаль установил закон динамической поляризации нервной клетки: нервный импульс перемещается по клетке и ее отросткам всегда в одном направлении: дендрит —> тело клетки —> аксон. В том же году немецкий исследователь В. Вальдейер (WaldeyerW., 1836—1921) назвал нервную клетку со всеми ее отростками «нейрон» и, опираясь на добытые к тому временем данные о структуре нервной ткани, окончательно сформулиро­вал нейронную теорию ее строения. К тому времени эта теория далеко не всем исследователям представлялась очевидной. Среди ее противников были, в час­тности, такие видные неврологи, как Ю. Герлах и К. Гольджи — сторонники синцитиального строения мозга.

Уже при макроскопическом осмотре мозга на разрезе выявляется неодно­родность составляющей его ткани. В головном и спинном мозге выделяют­ся участки серого и белого вещества. Серое вещество — места скопления тел нервных клеток и протоплазматической астроцитарной глии. Белое вещество состоит в основном из нервных волокон и окружающих их глиальных кле­ток — главным образом олигодендроцитов и волокнистых астроцитов, при этом белый цвет белого вещества мозга обусловлен цветом миелиновой обо­лочкой нервных волокон, формирующих проводящие проекционные пути, ко-миссуральные и ассоциативные связи.

2.5.2. Нервная клетка

Нервная клетка (нейрон), признающаяся основной структурной и функци­ональной единицей нервной системы (рис. 2.3), принципиально отличается от клеток, составляющих другие органы и ткани.

Но функциональная самостоятельность нейрона условна. Так, например, гибель периферических двигательных нервных клеток, расположенных в пе­редних рогах спинного мозга, может лишить смысла активность сопряженных с ними корковых моторных нейронов, так как прерывается путь между дви­гательными клетками коры и исполнительным органом — в данном случае с определенными поперечнополосатыми мышцами (ситуация, возникающая, к примеру, при эпидемическом полиомиелите). Особенности функции нейро­нов сказываются на их форме (рис. 2.4) и составе содержащихся в них цито-плазматических органелл.

Каждая нервная клетка (нейрон) имеет тело (перикарион) и отростки. Один из них — маловетвящийся и обычно самый длинный — аксон (нейрит); дру­гие, короткие, имеющие много ответвлений, — дендриты, в типичных случаях характеризующиеся древовидным строением. Форма и размеры нейронов ва­риабельны. По форме тел их делят на звездчатые, корзинчатые, пирамидные и пр. Размеры тел нейронов варьируют от 4 до 150 мкм в диаметре. Нейроны с большим количеством отростков называют мультиполярными, их большинс­тво. Кроме того, существуют биполярные нейроны с аксоном и одним дендри­том, находящиеся главным образом в составе обонятельной, зрительной и слу­ховой систем, и так называемые псевдоуниполярные клетки, расположенные в спинальных ганглиях и их аналогах, находящихся в составе черепных нервов. Псевдоуниполярные клетки также имеют по два отростка — аксон и дендрит1, но проксимальные части этих отростков прочно прилежат друг к другу, что на препаратах, импрегнированных серебром, создает впечатление униполярности клеток. Принято считать, что только в головном мозге человека насчитывается до 10 млрд нейронов. Возможна классификация нервных клеток и по дли­не аксонов [клетки с длинными аксонами, выходящими за пределы данного скопления клеток (ядра), называют клетками Гольджи I, клетки с коротки­ми аксонами — клетки Гольджи II). Классифицируются нейроны также и по их функции: сенсорные, моторные, ассоциативные. Особенно значимой для понимания многих клинических проблем является, пожалуй, классификация нейронов по характеру вырабатываемого в них нейромедиатора (нейротранс-миттера). По этому принципу нейроны дифференцируются на холинсргичес-кие, серотонинергические, адреналинергические, ГАМКергические, допами-нергические и т.п.

Тело клетки и ее отростки покрывает непрерывная сдвоенная мембрана (невролемма), представляющая собой липопротеиновый комплекс и выполня­ющая разграничительную и транспортные функции. Через нее осуществля­ется пассивный транспорт воды и некоторых низкомолекулярных веществ, а также перенос ионов и органических молекул против градиента концентра­ции с затратой энергии, возникающей в основном при расщеплении молекул аденозинтрифосфата (АТФ). Последнее свойство мембраны нервной клетки обеспечивает поддержание в ней постоянного мембранного потенциала покоя, а также возникновение возбуждающего или тормозного постсинаптического потенциалов (ВПСП или ТПСП), определяющих формирование нервного им­пульса в связи с резким изменением проницаемости клеточных мембран для содержащих биоэлектрический заряд ионов.

Нейрон (рис. 2.3) не только обеспечивает проведение импульсов, но и син­тезирует белки, липиды, углеводы, а также нейромедиаторы (нейротрансмиттеры). Некоторые нейроны к тому же продуцируют гормоны (вазопрессин, окситоцин, антидиуретический гормон, рилизинг-факторы). В теле нейрона находится цитоплазма и ядро с расположенным в нем ядрышком, а также базофильные органоиды (органеллы): пластинчатый комплекс (комплекс Гольджи), митохондрии, лизосомы, имеющиеся и в соматических клетках, и, кроме того, специфическое для нервных клеток базофильное вещество Ниссля, нейрофибриллы и нейротрубочки. Включениями в цито­плазме нервных клеток могут быть гранулы гликогена, каротиноидов, пигмента и пр.

Ядро нервной клетки относительно боль­шое, слабо окрашивается, содержит много дезоксирибонуклеиновой кислоты (ДНК); его окружает двухслойная мембрана с мно­жеством пор, через которые совершается обмен между цитоплазмой и заполняющей ядро нуклеоплазмой. В ядре происходит синтез рибонуклеиновой кислоты (РНК), которая проникает из него в плазму и учас­твует в формировании органелл клетки. Заключенное в ядре ядрышко представля­ет собой лишенное мембраны меняющееся по форме, размеру и химическому составу образование, состоящее из РНК, белков, липидов и находящегося внутри слоя ДНК. Изменчивость ядрышка отражает его высо­кую физиологическую активность.

Пластинчатый комплекс Гольджи (липохондрии), как и ядрышко, в процессе жизнедеятельности клетки подвергается циклическим изменениям. Он состоит из плотно упакованных двухслойных мембран и гранул, содержит липиды, фос-фатиды, мукополисахариды и участвует в синтезе углеводных полимеров, гор­монов.

Нейрон, его отростки

Рис. 2.3. Нейрон, его отростки: 1 — дендриты, 2 — аксон, 3 — разветв­ления аксона.

Некоторые виды нейронов

Рис. 2.4. Некоторые виды нейронов (по Бейли).

I — периферический чувствительный нейрон; 2 — короткоаксонный нейрон типа Голь-джи II; 3 — периферический мотонейрон; 4 — обонятельный нейрон; 5 — клетка зер­нистого слоя мозжечка; 6 — нейрон симпатического узла; 7 — клетка Пуркинье; 8 — пирамидная клетка Беца. Стрелки показывают направление перемещающихся по клетке нервных импульсов.

Митохондрии имеют палочковидную форму, рассеяны по всей цитоплазме нейрона. Особенно много их в наиболее активных частях нейрона: в его теле и окончаниях ветвлений аксона (в пресинаптических пуговках). Митохондрии содержат дыхательные ферменты и играют важную роль в осуществлении ды­хания клетки, обеспечивая процесс окислительного фосфорилирования (окис­ление углеводов и жиров) и участия в гликолизе. Основная функция митохон­дрий связана с образованием богатой энергией АТФ.

Лизосомы имеют вид вакуолей, содержат гидролитические ферменты (протеиназы, нуклеазы, глюкозидазы, фосфатазы, липазы), расщепляющие различ­ные биополимеры. Основная функция лизосом — расщепление биологичес­ких макромолекул внутриклеточного и внеклеточного происхождения на более простые микромолекулы, которые впоследствии могут быть утилизированы в результате происходящего в нейроне биосинтеза более сложных соединений.

Компоненты периферического мото­нейрона

Рис. 2.5. Компоненты периферического мото­нейрона [По Дж. Шаде и Д. Форду]. I — ядро; 2 — ядрышко; 3 — сателлит яд­рышка; 4 — дендрит; 5 — эндоплазматичес-кая сеть с гранулами РНК (вещество Ниссля); 6 — синапс; 7 — ножка астроцита; 8 — гра­нулы ДНК; 9 — липофусцин; 10 — аппарат Гольджи; 11 — митохондрия; 12 — аксонный холмик; 13 — нейрофибриллы; 14 — аксон; 15 — миелиновая оболочка; 16 — перехват Ранвье; 17 — ядро леммоцита; 18 — леммоцит в области нервно-мышечного синапса; 19 — ядро мышечной клетки; 20 — нервно-мышеч­ное соединение; 21 — мышца.

Базофильное вещество Ниссля (тигроид) составляют базофильные трубча­тые структуры и гранулы из РНК, соединенной с белком (РНК-Б). Глыбки вещества Ниссля рассеяны по всей цитоплазме нейрона и участвуют в фор­мировании ее эндоплазматической сети. Измельчаясь, они проникают в его дендриты, однако в аксоне и в той части тела клетки, от которой начинается аксон, базофильное вещество отсутствует. Признано, что оно осуществляет синтез белков, происходящий под контролем генетического аппарата ядра. Количество базофильного вещества в нервной клетке изменчиво и зависит от ее функционального состояния.

Среди включений в нервной клетке особое значение имеет нейромеланин, скопление которого наблюдается в черном веществе (substantia nigra) среднего мозга. Нейромеланин — необходимое звено в процессе образования катехола-минов.

2.5.3. Нервные волокна

Нервное волокно — в большинстве случаев аксон нервной клетки, состо­ит из осевого цилиндра, покрытого миелиновой оболочкой. Толщина аксона составляет от 0,3 до 20 мкм и зависит главным образом от толщины мие­линовой оболочки, которая образуется за счет многократного обертывания фрагментов осевого цилиндра «избыточной» оболочкой прилежащих к нему глиальных клеток, в центральной нервной системе — олигодендроцитов, в периферической нервной системе — шванновских клеток (леммоциты). Об­разуемая таким образом миелиновая оболочка состоит из слоев, спиралеоб­разно окружающих осевой цилиндр аксона, число их может быть 100 и более (рис. 2.6). В состав миелиновой оболочки входят холестерин, фосфолипиды, некоторые цереброзиды и жирные кислоты, а также белковые вещества. Меж­ду фрагментами миелиновой оболочки, каждый из которых сформирован за счет оболочки ближайшей глиальной клетки, образуются просветы — перехва­ты Ранвье (см. рис. 2.5). Скорость проведения по волокну нервного импульса прямо пропорциональна толщине его миелиновой оболочки и варьирует от 0,6 до 20 м/с.

Американские физиологи Г. Гассер (Gasser H.S., 1888—1963) и Дж. Эрлан-гер (Erlanger G., 1874—1965) в 1924 г. разделили аксоны на группы А, В и С. Большинство миелиновых волокон относятся к группе А. Группу В составляют белые соединительные ветви, относящиеся к симпатической нервной системе. В группу С входят наиболее тонкие нервные волокна, которые обычно назы­вают безмиелиновыми (безмякотными), однако и они, как правило, имеют хотя бы очень тонкую, однослойную миелиновую оболочку. Волокна группы А делятся по толщине на А-альфа, А-бета и А-гамма. А-альфа наиболее толстые из них1.

Зная толщину миелинового волокна, можно определить скорость проведе­ния по нему нервного импульса. Если волокно толще 1 мкм, можно пользо­ваться формулой: V (скорость проведения нервного импульса) = диаметр волокна (в мкм), умноженный на 6. Полученное произведение обозначается в м/с.

1 Г. Гассер и Дж. Эрлангер в 1944 г. удостоены Нобелевской премии.

Поперечные срезы нервно­го волокна на разных этапах процес­са его миелинизации

Рис. 2.6. Поперечные срезы нервно­го волокна на разных этапах процес­са его миелинизации (аксон и леммоцит).

а, б, в — стадии формирования мие-линовой оболочки.

Для определения скорости проведения импульсов по волокнам С (диаметр меньше 1 мкм) может быть применена другая формула: V = диаметр волокна (в мкм), умноженный на 2. Полученное произведение обозначается в м/с. Д. Ллойд (D. Lloyd) классифицирует аксоны по их диаметру: 1-я группа — 12—20 мкм; 2-я группа — 6—12 мкм; 3-я группа — 1—6 мкм; 4-я группа — меньше 1 мкм.

2.5.4. Аксоток

Для нейрона характерна исключительно высокая активность метаболичес­ких процессов. Биосинтез большинства макромолекул клетки осуществляется в ее теле. Отсюда они распространяются по аксону посредством ортоградного аксонального тока. Различают быстрый ортоградный аксональный ток (аксо-нальный транспорт), или быстрый компонент аксотока, благодаря которому по аксону транспортируются молекулы белка, гликопротеиды и фосфолипиды, некоторые ферменты, необходимые для поддержания текущего метаболиз­ма, со скоростью 200-400 мм/суг. Медленный аксональный ток (аксональный транспорт) обеспечивает перенос из тела клетки к периферии аксона матери­ала для восстановления клеточного каркаса (микротубулярно-нейрофиламен-тарной сети) со скоростью 0,3—1,0 мм/сут и актиносодержащих микрофила-ментов и аксоплазматического матрикса со скоростью 2—4 мм/сут.

Большинство переносимых по аксону молекул включается в метаболизм в пределах нейрона; они обеспечивают восстановление его энергетических за­трат, рост и регенерацию аксонов. Часть из них может переходить в постсина-птические структуры, а также в прилежащие глиальные клетки, участвуя таким образом, в частности, и в формировании миелиновой оболочки.

Синаптические процессы в возбуж­денном синапсе

Рис. 2.7. Синаптические процессы в возбуж­денном синапсе [По Л. Шельцыну, 1980). А — ацетат; X — холин; АХ — ацетилхолин; Хэ — холинэстераза; ВПСП — возбудитель­ный постсинаптический потенциал.

Продукты происходящих в аксоне процессов метаболизма посредством рет­роградного аксонального тока со скоростью 150—300 мм/сут перемещаются в тело клетки, где подвергаются дальнейшему разрушению ферментами лизосом до составных элементов, используемых при формировании вновь синтезируе­мых в теле нейрона макромолекул. Таким образом, ретроградный аксональный ток обеспечивает возможность осуществления в теле клетки процессов вторич­ной утилизации микромолекул.

2.5.5. Синаптическая передача

Место, где окончание аксона сближается с дендритом или телом следу­ющей в нейронной цепи нервной клетки, по предложению Ч. Шеррингтона (Sherrington Ch., 1857—1952), называется синапсом (от греч. sinapto — застеж­ка, соединение). Конечные ветвления аксона — телодендрии заканчиваются утолщением (пресинаптическая пуговка), в котором содержатся митохондрии и пузырьки с квантами медиатора (рис. 2.7). Участок невролеммы пресинаптической пуговки, особенно близко рас­положенный к структурам следующего нейрона, называется пресинаптической мембраной. Находящийся в непосредс­твенной близости от него участок невро­леммы последующего нейрона называет­ся постсинаптической мембраной. Между пресинаптической и постсинаптической мембранами расположена узкая синапти­ческая щель (ширина ее приблизительно 200 А, или 0,02 мкм).

Когда нервный импульс доходит до пресинаптической пуговки, из располо­женных в ней синаптических пузырьков в синаптическую щель выделяется квант нейромедиатора, который достигает постсинаптической мембраны и меня­ет ее проницаемость для находящихся вокруг положительно и отрицатель­но заряженных ионов, вызывая, таким образом, в расположенном по другую сторону синаптической шели нейроне возникновение возбуждающего или тормозного постсинаптического потенциала. В результате нейромедиатор обеспечивает химическую передачу нервного импульса через синаптическую шель и, по сути, служит посредником для передачи нервного импульса от передающего его нейрона к воспринимающему.

Выделившиеся в синаптическую щель кванты медиатора отчасти возвраща­ются через пресинаптическую мембрану назад (обратный захват) в пресинап-тическую пуговку, отчасти медиатор разрушается в синаптической щели под влиянием определенного фермента. Например, в нервно-мышечном синапсе и в синаптическом аппарате других холинергических нейронов таким фермен­том является антихолинэстераза. Функции медиаторов (нейротрансмиттеров) могут выполнять многие биологические вещества, чаще аминокислоты. По влиянию на синаптические аппараты нейротрансмиттеры могут быть разде­лены на возбуждающие и тормозные. К возбуждающим относится глутамат и аспартат, а к тормозным — ГАМК и глицин. Кроме того, выделяется группа нейротрансмиттеров, состоящая главным образом из моноаминов (дофамин, норадреналин, серторонин), при этом одни и те же нейротрансмиттеры мо­гут, воздействуя на одни нейроны, оказывать возбуждающее действие, тогда как влияние их на другие нейроны может быть тормозным. Так, ацетилхолин нервно-мышечного синаптического аппарата возбуждает мышечные волокна, а ацетилхолин как медиатор стриопаллидарных нейронов обеспечивает тор­мозное влияние на клетки бледного шара.

Помимо трансмиттеров, на синаптическую передачу могут оказывать уси­ливающее или ослабляющее действие нейромодуляторы (эндорфины, сома-тостатин, субстанция Р) и нейрогормоны (ангиотензин, вазопрессин и др.), которые, однако, сами по себе не создают деполяризационного эффекта. Ней­рогормоны попадают в кровяное русло и разносятся с кровью на большие расстояния. Их действие уступает модуляторам по темпу, но проявляется дли­тельнее.

Синапсы обеспечивают регуляцию потока нервных импульсов и определя­ют проведение их всегда в одном направлении. Цепи нейронов, по которым определенные нервные импульсы проходят в одном направлении, формиру­ют проводящие пути. Проводящий путь может состоять из гетерогенных по характеру выделяемого медиатора нейронов. Химическая передача нервного импульса через синаптический аппарат была доказана в 1921 г. австрийским нейрофизиологом О. Леви (Loewi О., 1873-1961).

Дендрит, аксон и синапс, строение нервной клетки

Клеточная мембрана

Этот элемент обеспечивает функцию барьера, отделяя внутреннюю среду от находящейся снаружи нейроглии. Тончайшая пленка состоит из двух слоев белковых молекул и находящихся между ними фосфолипидов. Строение мембраны нейрона предполагает наличие в ее структуре специфических рецепторов, отвечающих за узнавание раздражителей. Они обладают выборочной чувствительностью и при необходимости «включаются» при наличии контрагента. Связь внутренней и наружной сред происходит через канальцы, пропускающие ионы кальция или калия. При этом они открываются или закрываются под действием белковых рецепторов.

Благодаря мембране клетка имеет свой потенциал. При передаче его по цепочке происходит иннервация возбудимой ткани. Контакт мембран соседствующих нейронов происходит в синапсах. Поддержание постоянства внутренней среды – это важная составляющая жизнедеятельности любой клетки. И мембрана тонко регулирует концентрацию в цитоплазме молекул и заряженных ионов. При этом происходит транспорт их в необходимых количествах для протекания реакций метаболизма на оптимальном уровне.

Классификация

Структурная классификация

На основании числа и расположения дендритов и аксона нейроны делятся на безаксонные, униполярные нейроны, псевдоуниполярные нейроны, биполярные нейроны и мультиполярные (много дендритных стволов, обычно эфферентные) нейроны.

Безаксонные нейроны — небольшие клетки, сгруппированы вблизи спинного мозга в межпозвоночных ганглиях, не имеющие анатомических признаков разделения отростков на дендриты и аксоны. Все отростки у клетки очень похожи. Функциональное назначение безаксонных нейронов слабо изучено.

Униполярные нейроны — нейроны с одним отростком, присутствуют, например в сенсорном ядре тройничного нерва в среднем мозге. Многие морфологи считают, что униполярные нейроны в теле человека и высших позвоночных не встречаются.

Биполярные нейроны — нейроны, имеющие один аксон и один дендрит, расположенные в специализированных сенсорных органах — сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях.

Мультиполярные нейроны — нейроны с одним аксоном и несколькими дендритами. Данный вид нервных клеток преобладает в центральной нервной системе.

Псевдоуниполярные нейроны — являются уникальными в своём роде. От тела отходит один отросток, который сразу же Т-образно делится. Весь этот единый тракт покрыт миелиновой оболочкой и структурно представляет собой аксон, хотя по одной из ветвей возбуждение идёт не от, а к телу нейрона. Структурно дендритами являются разветвления на конце этого (периферического) отростка. Триггерной зоной является начало этого разветвления (то есть находится вне тела клетки). Такие нейроны встречаются в спинальных ганглиях.

Функциональная классификация

По положению в рефлекторной дуге различают афферентные нейроны (чувствительные нейроны), эфферентные нейроны (часть из них называется двигательными нейронами, иногда это не очень точное название распространяется на всю группу эфферентов) и интернейроны (вставочные нейроны).

Афферентные нейроны (чувствительный, сенсорный, рецепторный или центростремительный). К нейронам данного типа относятся первичные клетки органов чувств и псевдоуниполярные клетки, у которых дендриты имеют свободные окончания.

Эфферентные нейроны (эффекторный, двигательный, моторный или центробежный). К нейронам данного типа относятся конечные нейроны — ультиматные и предпоследние — не ультиматные.

Ассоциативные нейроны (вставочные или интернейроны) — группа нейронов осуществляет связь между эфферентными и афферентными.

Секреторные нейроны — нейроны, секретирующие высокоактивные вещества (нейрогормоны). У них хорошо развит комплекс Гольджи, аксон заканчивается аксовазальными синапсами.

Морфологическая классификация

Морфологическое строение нейронов многообразно. При классификации нейронов применяют несколько принципов:

  • учитывают размеры и форму тела нейрона;
  • количество и характер ветвления отростков;
  • длину аксона и наличие специализированных оболочек.

По форме клетки, нейроны могут быть сферическими, зернистыми, звездчатыми, пирамидными, грушевидными, веретеновидными, неправильными и т. д. Размер тела нейрона варьирует от 5 мкм у малых зернистых клеток до 120—150 мкм у гигантских пирамидных нейронов.

По количеству отростков выделяют следующие морфологические типы нейронов:

  • униполярные (с одним отростком) нейроциты, присутствующие, например, в сенсорном ядре тройничного нерва в среднем мозге;
  • псевдоуниполярные клетки, сгруппированные вблизи спинного мозга в межпозвоночных ганглиях;
  • биполярные нейроны (имеют один аксон и один дендрит), расположенные в специализированных сенсорных органах — сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях;
  • мультиполярные нейроны (имеют один аксон и несколько дендритов), преобладающие в ЦНС.

Строение нейронов

Схема нейрона

Тело клетки

Тело нервной клетки состоит из протоплазмы (цитоплазмы и ядра), ограниченной снаружи мембраной из липидного бислоя. Липиды состоят из гидрофильных головок и гидрофобных хвостов. Липиды располагаются гидрофобными хвостами друг к другу, образуя гидрофобный слой. Этот слой пропускает только жирорастворимые вещества (напр. кислород и углекислый газ). На мембране находятся белки: в форме глобул на поверхности, на которых можно наблюдать наросты полисахаридов (гликокаликс), благодаря которым клетка воспринимает внешнее раздражение, и интегральные белки, пронизывающие мембрану насквозь, в которых находятся ионные каналы.

Нейрон состоит из тела диаметром от 3 до 130 мкм. Тело содержит ядро (с большим количеством ядерных пор) и органеллы (в том числе сильно развитый шероховатый ЭПР с активными рибосомами, аппарат Гольджи), а также из отростков. Выделяют два вида отростков: дендриты и аксон. Нейрон имеет развитый цитоскелет, который проникает в его отростки. Цитоскелет поддерживает форму клетки, его нити служат «рельсами» для транспорта органелл и упакованных в мембранные пузырьки веществ (например, нейромедиаторов). Цитоскелет нейрона состоит из фибрилл разного диаметра: Микротрубочки (Д = 20—30 нм) — состоят из белка тубулина и тянутся от нейрона по аксону, вплоть до нервных окончаний. Нейрофиламенты (Д = 10 нм) — вместе с микротрубочками обеспечивают внутриклеточный транспорт веществ. Микрофиламенты (Д = 5 нм) — состоят из белков актина и миозина, особенно выражены в растущих нервных отростках и в нейроглии.(Нейроглия, или просто глия (от др.-греч. νεῦρον — волокно, нерв + γλία — клей), — совокупность вспомогательных клеток нервной ткани. Составляет около 40 % объёма ЦНС. Количество глиальных клеток в мозге примерно равно количеству нейронов).

В теле нейрона выявляется развитый синтетический аппарат, гранулярная эндоплазматическая сеть нейрона окрашивается базофильно и известна под названием «тигроид». Тигроид проникает в начальные отделы дендритов, но располагается на заметном расстоянии от начала аксона, что служит гистологическим признаком аксона. Нейроны различаются по форме, числу отростков и функциям. В зависимости от функции выделяют чувствительные, эффекторные (двигательные, секреторные) и вставочные. Чувствительные нейроны воспринимают раздражения, преобразуют их в нервные импульсы и передают в мозг. Эффекторные (от лат. effectus — действие) — вырабатывают и посылают команды к рабочим органам. Вставочные — осуществляют связь между чувствительными и двигательными нейронами, участвуют в обработке информации и выработке команд.

Различается антероградный (от тела) и ретроградный (к телу) аксонный транспорт.

Дендриты и аксон

Основные статьи: Дендрит и Аксон

Схема строения нейрона

Аксон — длинный отросток нейрона. Приспособлен для проведения возбуждения и информации от тела нейрона к нейрону или от нейрона к исполнительному органу.
Дендриты — короткие и сильно разветвлённые отростки нейрона, служащие главным местом для образования влияющих на нейрон возбуждающих и тормозных синапсов (разные нейроны имеют различное соотношение длины аксона и дендритов), и которые передают возбуждение к телу нейрона. Нейрон может иметь несколько дендритов и обычно только один аксон. Один нейрон может иметь связи со многими (до 20 тысяч) другими нейронами.

Дендриты делятся дихотомически, аксоны же дают коллатерали. В узлах ветвления обычно сосредоточены митохондрии.

Дендриты не имеют миелиновой оболочки, аксоны же могут её иметь. Местом генерации возбуждения у большинства нейронов является аксонный холмик — образование в месте отхождения аксона от тела. У всех нейронов эта зона называется триггерной.

Синапс

Основная статья: Синапс

Си́напс (греч. σύναψις, от συνάπτειν — обнимать, обхватывать, пожимать руку) — место контакта между двумя нейронами или между нейроном и получающей сигнал эффекторной клеткой. Служит для передачи нервного импульса между двумя клетками, причём в ходе синаптической передачи амплитуда и частота сигнала могут регулироваться. Одни синапсы вызывают деполяризацию нейрона и являются возбуждающими, другие — гиперполяризацию и являются тормозными. Обычно для возбуждения нейрона необходимо раздражение от нескольких возбуждающих синапсов.

Термин был введён английским физиологом Чарльзом Шеррингтоном в 1897 г.

Литература

  • Поляков Г. И., О принципах нейронной организации мозга, М: МГУ, 1965
  • Косицын Н. С. Микроструктура дендритов и аксодендритических связей в центральной нервной системе. М.: Наука, 1976, 197 с.
  • Немечек С. и др. Введение в нейробиологию, Avicennum: Прага, 1978, 400 c.
  • Мозг (сборник статей: Д. Хьюбел, Ч. Стивенс, Э. Кэндел и дp. — выпуск журнала Scientific American (сентябрь 1979)). М. :Миp, 1980
  • Савельева-Новосёлова Н. А., Савельев А. В. Устройство для моделирования нейрона. А. с. № 1436720, 1988
  • Савельев А. В. Источники вариаций динамических свойств нервной системы на синаптическом уровне // журнал “Искусственный интеллект”, НАН Украины. — Донецк, Украина, 2006. — № 4. — С. 323—338.

Строение нейрона

На рисунке приведено строение нейрона. Он состоит из основного тела и ядра. От клеточного тела идет ответвление многочисленных волокон, которые именуются дендритами.

Мощные и длинные дендриты называются аксонами, которые в действительности намного длиннее, чем на картинке. Их протяженность варьируется от нескольких миллиметров до более метра.

Аксоны играют ведущую роль в передаче информации между нейронами и обеспечивают работу всей нервной системы.

Место соединения дендрита (аксона) с другим нейроном называется синапсом. Дендриты при наличии раздражителей могут разрастись настолько сильно, что станут улавливать импульсы от других клеток, что приводит к образованию новых синаптических связей.

Синаптические связи играют существенную роль в формировании личности человека. Так, личность с устоявшимся позитивным опытом будет смотреть на жизнь с любовью и надеждой, человек, у которого нейронные связи с негативным зарядом, станет со временем пессимистом.

Волокна

Вокруг нервных отростков независимо располагаются глиальные оболочки. В комплексе они формируют нервные волокна. Ответвления в них называются осевыми цилиндрами. Существуют безмиелиновые и миелиновые волокна. Они отличаются по строению глиальной оболочки. Безмиелиновые волокна имеют достаточно простое устройство. Подходящий к глиальной клетке осевой цилиндр прогибает ее цитолемму. Цитоплазма смыкается над ним и формирует мезаксон — двойную складку. Одна глиальная клетка может содержать несколько осевых цилиндров. Это «кабельные» волокна. Их ответвления могут переходить в расположенные по соседству глиальные клетки. Импульс проходит со скоростью 1-5 м/с. Волокна данного типа обнаруживаются в ходе эмбриогенеза и в постганглионарных участках вегетативной системы. Миелиновые сегменты толстые. Они расположены в соматической системе, иннервирующей мускулатуру скелета. Леммоциты (глиальные клетки) проходят последовательно, цепью. Они формируют тяж. В центре проходит осевой цилиндр. В глиальной оболочке присутствуют:

  • Внутренний слой нервных клеток (миелиновый). Он считается основным. На некоторых участках между слоями цитолеммы присутствуют расширения, образующие миелиновые насечки.
  • Периферический слой. В нем присутствуют органеллы и ядро – нейрилемма.
  • Толстая базальная мембрана.

Внутреннее строение нейронов

Ядро нейрона
обычно крупное, округлое, с мелкодис­персным
хроматином, 1-3 крупными ядрышками. Это
отра­жает высокую интенсивность
процессов транскрипции в ядре нейрона.

Клеточная оболочка
нейрона способна генерировать и проводить
электрические импульсы. Это достигается
изме­нением локальной проницаемости
её ионных каналов для Na+ и К+, изменением
электрического потенциала и быст­рым
перемещением его по цитолемме (волна
деполяризации, нервный импульс).

В цитоплазме нейронов
хорошо развиты все органоиды общего
назначения. Митохондрии
многочисленны и обеспе­чивают высокие
энергетические потребности нейрона,
свя­занные со значительной активностью
синтетических процес­сов, проведением
нервных импульсов, работой ионных
насо­сов. Они характеризуются быстрым
изнашиванием и обнов­лением (рис 8-3).
Комплекс
Гольджи
очень
хорошо развит. Не случайно эта органелла
впервые была описана и демонст­рируется
в курсе цитологии именно в нейронах.
При свето­вой микроскопии он выявляется
в виде колечек, нитей, зёр­нышек,
расположенных вокруг ядра (диктиосомы).
Много­численные лизосомы
обеспечивают постоянное интенсивное
разрушение изнашиваемых компонентов
цитоплазмы ней­рона (аутофагия).

РДендрит, аксон и синапс, строение нервной клеткиис.
8-3. Ультрастук­турная орга­низация
тела нейрона.

Д. Дендриты. А.
Ак­сон.

1. Ядро (ядрышко
показано стрелкой).

2. Митохондрии.

3. Комплекс
Голь­джи.

4. Хроматофильная
субстанция (уча­стки гранулярной
цито­плаз­мотической сети).

5. Лизосомы.

6. Аксонный
холмик.

7. Нейротру­бочки,
нейрофиламенты.

(По В. Л. Быкову).

Для нормального
функционирования и обновления структур
нейрона в них должен быть хорошо развит
бело­ксинтезирующий аппарат (рис.
8-3). Гранулярная
цитоплаз­матическая сеть

в цитоплазме нейронов образует скопле­ния,
которые хорошо окрашиваются основными
красителями и видны при световой
микроскопии в виде глыбок хромато­фильного
вещества

(базофильное, или тигровое вещество,
субстанция Ниссля). Термин субстанция
Ниссля
сохра­нился в честь учёного Франца
Ниссля, впервые ее описав­шего. Глыбки
хроматофильного вещества расположены
в пе­рикарионах нейронов и дендритах,
но никогда не встреча­ются в аксонах,
где белоксинтезирующий аппарат развит
слабо (рис. 8-3). При длительном раздражении
или повреж­дении нейрона эти скопления
гранулярной цитоплазматиче­ской сети
распадаются на отдельные элементы, что
на свето­оптическом уровне проявляется
исчезновением субстанции Ниссля
(хроматолиз,
тигролиз).

Цитоскелет
нейронов хорошо развит, образует
трёх­мерную сеть, представленную
нейрофиламентами (толщиной 6-10 нм) и
нейротрубочками (диаметром 20-30 нм).
Нейро­филаменты и нейротрубочки
связаны друг с другом попереч­ными
мостиками, при фиксации они склеиваются
в пучки толщиной 0,5-0,3 мкм, которые
окрашиваются солями се­ребра.На
светооптическом уровне они описаны под
назва­нием нейрофибрилл.
Они образуют
сеть в перикарионах нейроцитов, а в
отростках лежат параллельно (рис. 8-2).
Ци­тоскелет поддерживает форму клеток,
а также обеспечивает транспортную
функцию – участвует в транспорте веществ
из перикариона в отростки (аксональный
транспорт).

Включения
в цитоплазме нейрона представлены
липид­ными каплями, гранулами
липофусцина
– «пигмента
старе­ния» – жёлто-бурого цвета
липопротеидной природы. Они представляют
собой остаточные тельца (телолизосомы)
с продуктами непереваренных структур
нейрона. По-види­мому, липофусцин
может накапливаться и в молодом воз­расте,
при интенсивном функционировании и
повреждении нейронов. Кроме того, в
цитоплазме нейронов черной суб­станции
и голубого пятна ствола мозга имеются
пигментные включения меланина.
Во многих нейронах головного мозга
встречаются включения гликогена.

Нейроны не способны к делению, и с
возрастом их число постепенно уменьшается
вследствие естественной ги­бели. При
дегенеративных заболеваниях (болезнь
Альцгей­мера, Гентингтона, паркинсонизм)
интенсивность апоптоза возрастает и
количество нейронов в определённых
участках нервной системы резко
уменьшается.

Нервные клетки

Чтобы обеспечивать множественные связи, нейрон имеет особое строение. Кроме тела, в котором сосредоточены главные органеллы, присутствуют отростки. Часть их короткие (дендриты), обычно их несколько, другой (аксон) – он один, и его длина в отдельных структурах может достигать 1 метра.

Строение нервной клетки нейрона имеет такой вид, чтобы обеспечивать наилучший взаимообмен информацией. Дендриты сильно ветвятся (как крона дерева). Своими окончаниями они взаимодействуют с отростками других клеток. Место их стыка называют синапсом. Там происходит прием-передача импульса. Его направление: рецептор – дендрит – тело клетки (сома) – аксон – реагирующий орган или ткань.

Внутреннее строение нейрона по составу органелл сходно с другими структурными единицами тканей. В нем присутствует ядро и цитоплазма, ограниченная мембраной. Внутри располагаются митохондрии и рибосомы, микротрубочки, эндоплазматическая сеть, аппарат Гольджи.

Дендрит, аксон и синапс, строение нервной клетки

Синапсы

С их помощью клетки нервной системы соединяются между собой. Существуют разные синапсы: аксо-соматические, -дендритические, -аксональные (главным образом тормозного типа). Также выделяют электрические и химические (первые выявляются достаточно редко в организме). В синапсах различают пост- и пресинаптическую части. Первая содержит мембрану, в которой присутствуют высокоспецифичные протеиновые (белковые) рецепторы. Они реагируют только на определенные медиаторы. Между пре- и постсинаптической частями расположена щель. Нервный импульс достигает первой и активирует особые пузырьки. Они переходят к пресинаптической мембране и попадают в щель. Оттуда они влияют на рецептор постсинаптической пленки. Это провоцирует ее деполяризацию, передающуюся, в свою очередь, посредством центрального отростка следующей нервной клетки. В химическом синапсе передача информации осуществляется только по одному направлению.

Развитие

Закладка нервной ткани происходит на третьей неделе эмбрионального периода. В это время формируется пластинка. Из нее развиваются:

  • Олигодендроциты.
  • Астроциты.
  • Эпендимоциты.
  • Макроглия.

В ходе дальнейшего эмбриогенеза нервная пластинка превращается в трубку. Во внутреннем слое ее стенки располагаются стволовые вентрикулярные элементы. Они пролиферируют и отходят кнаружи. В этой области часть клеток продолжает делиться. В результате они разделяются на спонгиобласты (компоненты микроглии), глиобласты и нейробласты. Из последних формируются нервные клетки. В стенке трубки выделяется 3 слоя:

  • Внутренний (эпендимный).
  • Средний (плащевой).
  • Внешний (краевой) – представлен белым мозговым веществом.

На 20-24 неделе в краниальном сегменте трубки начинается образование пузырей, которые являются источником формирования головного мозга. Оставшиеся отделы служат для развития спинного мозга. От краев нервного желоба отходят клетки, участвующие в образовании гребня. Он располагается между эктодермой и трубкой. Из этих же клеток формируются ганглиозные пластинки, служащие основой для миелоцитов (пигментных кожных элементов), периферических нервных узлов, меланоцитов покрова, компонентов APUD-системы.

Классификация

Нейроны разделяют на виды в зависимости от типа медиатора (посредника проводящего импульса) выделяемого на окончаниях аксона. Это может быть холин, адреналин и пр. От места расположения в отделах ЦНС они могут относиться к соматическим нейронам или к вегетативным. Различают воспринимающие клетки (афферентные) и передающие обратные сигналы (эфферентные) в ответ на раздражение. Между ними могут находиться итернейроны, отвечающие за обмен информацией внутри ЦНС. По типу ответной реакции клетки могут тормозить возбуждение или, наоборот, повышать его.

По состоянию их готовности различают: «молчащие», которые начинают действовать (передают импульс) только при наличии определенного вида раздражения, и фоновые, что постоянно осуществляют мониторинг (непрерывная генерация сигналов). В зависимости от типа воспринимаемой от сенсоров информации меняется и строение нейрона. В этой связи их классифицируют на бимодальные, с относительно простым ответом на раздражение (два взаимосвязанных вида ощущения: укол и — как результат — боль, и полимодальные. Это более сложная структура – полимодальные нейроны (специфическая и неоднозначная реакция).

Дендрит, аксон и синапс, строение нервной клетки

Что такое нейрон нейронные связи

В переводе с греческого нейрон, или как его еще называют неврон, означает «волокно», «нерв». Нейрон – это специфическая структура в нашем организме, которая отвечает за передачу внутри него любой информации, в быту называемая нервной клеткой.

Нейроны работают при помощи электрических сигналов и способствуют обработке мозгом поступающей информации для дальнейшей координации производимых телом действий.

Эти клетки являются составляющей частью нервной системы человека, предназначение которой состоит в том, чтобы собрать все сигналы, поступающие из вне или от собственного организма и принять решение о необходимости того или иного действия. Именно нейроны помогают справиться с такой задачей.

Каждый из нейронов имеет связь с огромным количеством таких же клеток, создаётся своеобразная «паутина», которая называется нейронной сетью. Посредством данной связи в организме передаются электрические и химические импульсы, приводящие всю нервную систему в состояние покоя либо, наоборот, возбуждения.

К примеру, человек столкнулся с неким значимым событием. Возникает электрохимический толчок (импульс) нейронов, приводящий к возбуждению неровной системы. У человека начинает чаще биться сердце, потеют руки или возникают другие физиологические реакции.

Мы рождаемся с заданным количеством нейронов, но связи между ними еще не сформированы. Нейронная сеть строится постепенно в результате поступающих из вне импульсов. Новые толчки формируют новые нейронные пути, именно по ним в течение жизни побежит аналогичная информация. Мозг воспринимает индивидуальный опыт каждого человека и реагирует на него. К примеру, ребенок, схватился за горячий утюг и отдернул руку. Так у него появилась новая нейронная связь.

Стабильная нейронная сеть выстраивается у ребенка уже к двум годам. Удивительно, но уже с этого возраста те клетки, которые не используются, начинают ослабевать. Но это никак не мешает развитию интеллекта. Наоборот, ребенок познает мир через уже устоявшиеся нейронные связи, а не анализирует бесцельно все вокруг.

Даже у такого малыша есть практический опыт, позволяющий отсекать ненужные действия и стремиться к полезным. Поэтому, например, так сложно отучить ребенка от груди — у него сформировалась крепкая нейронная связь между приложением к материнскому молоку и удовольствию, безопасности, спокойствию.

Познание нового опыта на протяжении всей жизни приводит к отмиранию ненужных нейронных связей и формированию новых и полезных. Этот процесс оптимизирует головной мозг наиболее эффективным для нас образом. Например, люди, проживающие в жарких странах, учатся жить в определенном климате, а северянам нужен совсем другой опыт для выживания.

Составляющие

Глиоцитов в системе в 5-10 раз больше, чем нервных клеток. Они выполняют разные функции: опорную, защитную, трофическую, стромальную, выделительную, всасывающую. Кроме этого, глиоциты обладают способностью к пролиферации. Эпендимоциты отличаются призматической формой. Они составляют первый слой, выстилают мозговые полости и центральный спинномозговой отдел. Клетки участвуют в продуцировании спинномозговой жидкости и обладают способностью всасывать ее. Базальная часть эпендимоцитов имеет коническую усеченную форму. Она переходит в длинный тонкий отросток, пронизывающий мозговое вещество. На его поверхности он формирует глиальную отграничительную мембрану. Астроциты представлены многоотросчатыми клетками. Они бывают:

  • Протоплазматическими. Они расположены в сером мозговом веществе. Эти элементы отличаются наличием многочисленных коротких разветвлений, широких окончаний. Часть последних окружает кровеносные капиллярные сосуды, участвует в формировании гематоэнцефалического барьера. Другие отростки направлены к нейронным телам и по ним осуществляется перенос питательных веществ из крови. Они также обеспечивают защиту и изолируют синапсы.
  • Волокнистыми (фиброзными). Эти клетки находятся в белом веществе. Их окончания слабоветвящиеся, длинные и тонкие. На концах у них присутствуют разветвления и формируются отграничительные мембраны.

Олиодендроциты представляют собой мелкие элементы с отходящими короткими хвостами, расположенными вокруг нейронов и их окончаний. Они формируют глиальную оболочку. Посредством нее передаются импульсы. На периферии эти клетки называют мантийными (леммоцитами). Микроглия является частью макрофагальной системы. Она представлена в виде мелких подвижных клеток с малоразветвленными короткими отростками. В элементах содержится светлое ядро. Они могут формироваться из кровяных моноцитов. Микроглия восстанавливает строение нервной клетки, подвергшейся повреждениям.

Нейроглия

Невроны не способны делиться, потому и появилось утверждение, что нервные клетки не восстанавливаются. Именно поэтому их следует оберегать с особой тщательностью. С основной функцией «няни» справляется нейроглия. Она находится между нервными волокнами.

Дендрит, аксон и синапс, строение нервной клетки

Эти мелкие клетки отделяют нейроны друг от друга, удерживают их на своем месте. У них длинный список функций. Благодаря нейроглии сохраняется постоянная система установленных связей, обеспечивается расположение, питание и восстановление нейронов, выделяются отдельные медиаторы, фагоцитируется генетически чужое.

Таким образом, нейроглия выполняет ряд функций:

  1. опорную;
  2. разграничительную;
  3. регенераторную;
  4. трофическую;
  5. секреторную;
  6. защитную и т.д.

В ЦНС нейроны составляют серое вещество, а за границами мозга они скапливаются в специальные соединения, узлы – ганглии. Дендриты и аксоны создают белое вещество. На периферии именно благодаря этим отросткам строятся волокна, из которых и состоят нервы.

Строение нейрона

Плазматическая
мембрана
окружает нервную клетку.
Она состоит из белковых и липидных
компонентов, находящихся в
жидкокристаллическом состоянии(модель
мозаичной мембраны)
: двуслойность
мембраны создается липидами, образующими
матрикс, в котрый частично или полностью
погружены белковые комплексы.
Плазматическая мембрана регулирует
обмен веществ между клеткой и ее средой,
а также служит структурной основой
электрической активности.

Ядроотделено
от цитоплазмы двумя мембранами, одна
из которых примыкает к ядру, а другая к
цитоплазме. Обе они местами сходятся,
образуя поры в ядерной оболочке, служащие
для транспорта веществ между ядром и
цитоплазмой. Ядро контролирует
дифференцировку нейрона в его конечную
форму, которая может быть очень сложной
и определяет характер межклеточных
связей. В ядре нейрона обычно находится
ядрышко.

Дендрит, аксон и синапс, строение нервной клетки

Рис. 1. Строение
нейрона (с изменениями по ):

1 — тело (сома), 2 —
дендрит, 3 — аксон, 4 — аксонная терминаль,
5 — ядро,

6 — ядрышко, 7 —
плазматическая мембрана, 8 — синапс, 9 —
рибосомы,

10 — шероховатый
(гранулярный) эндоплазматический
ретикулум,

11 — субстанция
Ниссля, 12 — митохондрии, 13 — агранулярный
эндоплаз­матический ретикулум, 14 —
микротрубочки и нейрофиламенты,

15
— миелиновая оболочка, образованная
шванновской клеткой

Рибосомы производят
элементы молекулярного аппарата для
большей части клеточных функций:
ферменты, белки-переносчики, рецепторы,
трансдукторы, сократительные и опорные
элементы, белки мембран. Часть рибосом
находится в цитоплазме в свободном
состоянии, другая часть прикрепляется
к обширной внутриклеточной мембранной
системе, являющейся продолжением
оболочки ядра и расходящейся по всей
соме в форме мембран, каналов, цистерн
и пузырьков (шероховатый эндоплазматический
ретикулум).
В нейронах близ ядра
образуется характерное скопление
шероховатого эндоплазматического
ретикулума (субстанция Ниссля),
служащее местом интенсивного синтеза
белка.

Аппарат Гольджи
система уплощенных мешочков, или
цистерн — имеет внутреннюю, формирующую,
сторону и наружную, выделяющую. От
последней отпочковываются пузырьки,
образующие секреторные гранулы. Функция
аппарата Гольджи в клетках состоит в
хранении, концентрировании и упаковке
секреторных белков. В нейронах он
представлен более мелкими скоплениями
цистерн и его функция менее ясна.

Лизосомы —заключенные в мембрану структуры,не
имеющие постоянной формы, — образуют
внутреннюю пищеварительную систему. У
взрослых особей в нейронах образуются
и накапливаютсялипофусциновые
гранулы
, происходящие из лизосом. С
ними связывают процессы старения, а
также некоторые болезни.

Митохондрии
имеют гладкую наружную и складчатую
внутреннюю мембраны и являются местом
синтезааденозинтрифосфорной кислоты
(АТФ)
— основного источника энергии
для клеточных процессов — в цикле
окисления глюкозы (у позвоночных).
Большинство нервных клеток лишено
способности запасать гликоген (полимер
глюкозы), что усиливает их зависимость
в отношении энергии от содержания в
крови кислорода и глюкозы.

Фибриллярные
структуры: микротрубочки
(диаметр
20-30 нм),нейрофиламенты(10 нм) имикрофиламенты (5 нм). Микротрубочки
и нейрофиламенты участвуют во
внутриклеточном транспорте различных
веществ между телом клетки и отходящими
отростками. Микрофиламенты изобилуют
в растущих нервных отростках и,
по-видимому, управляют движениями
мембраны и текучестью подлежащей
цитоплазмы.

Синапс —функциональное соединение нейронов,
посредством которого происходит передача
электрических сигналов между клетками.Щелевой контактобеспечивает
электрический механизм связи между
нейронами(электрический синапс).

Дендрит, аксон и синапс, строение нервной клетки

Рис. 2. Строение
синаптических контактов:

а
— щелевого контакта, б — химического
синапса (с изменениями по ):

1 — коннексон,
состоящий из 6 субъединиц, 2 — внеклеточное
пространство,

3 — синаптическая
везикула, 4 — пресинаптическая мембрана,
5 — синаптическая

щель, 6 —
постсинаптическая мембрана,7 — митохондрия,
8 — микротрубочка,

9
— нейрофиламенты

Химический синапсотличается ориентацией мембран в
направлении от нейрона к нейрону, что
проявляется в неодинаковой степени
уплотненности двух смежных мембран и
наличием группы небольших везикулвблизи синаптической щели. Такая
структура обеспечивает передачу сигнала
путем экзоцитоза медиатораиз
везикул.

Синапсы также
классифицируются в зависимости от того,
чем они образованы: аксо-соматические,
аксо-дендритные, аксо-аксонные и
дендро-дендритные.

Дендриты

Дендрит, аксон и синапс, строение нервной клетки

Дендриты – древовидные расширения в начале нейронов, которые служат для увеличения площади поверхности клетки. У многих нейронов их большое количество (тем не менее, встречаются и такие, у которых есть только один дендрит). Эти крошечные выступы получают информацию от других нейронов и передают её в виде импульсов к телу нейрона (соме). Место контакта нервных клеток, через которое передаются импульсы – химическим или электрическим путём, – называется синапсом.

Характеристики дендритов:

  • Большинство нейронов имеют много дендритов
  • Тем не менее, некоторые нейроны могут иметь только один дендрит
  • Короткие и сильно разветвленные
  • Участвует в передаче информации в тело клетки

Сома

Дендрит, аксон и синапс, строение нервной клетки

Сомой, или телом нейрона, называется место, где сигналы от дендритов аккумулируются и передаются дальше. Сома и ядро не играют активной роли в передаче нервных сигналов. Эти два образования служат скорее для поддержания жизнедеятельности нервной клетки и сохранения её работоспособности. Этой же цели служат митохондрии, которые обеспечивают клетки энергией, и аппарат Гольджи, который выводит продукты жизнедеятельности клеток за пределы клеточной мембраны.

Аксонный холмик

Дендрит, аксон и синапс, строение нервной клетки

Аксонный холмик – участок сомы, от которого отходит аксон, – контролирует передачу нейроном импульсов. Именно тогда, когда общий уровень сигналов превышает пороговое значение холмика, он посылает импульс (известный, как потенциал действия) далее по аксону, к другой нервной клетке.

Аксон

Дендрит, аксон и синапс, строение нервной клетки

Аксон – это удлиненный отросток нейрона, который отвечает за передачу сигнала от одной клетки к другой. Чем больше аксон, тем быстрее он передаёт информацию. Некоторые аксоны покрыты специальным веществом (миелином), который выступает в качестве изолятора. Аксоны, покрытые миелиновой оболочкой, способны передавать информацию намного быстрее.

Характеристики Аксона:

  • У большинства нейронов имеется только один аксон
  • Участвует в передаче информации от тела клетки
  • Может или не может иметь миелиновую оболочку

Терминальные ветви

Дендрит, аксон и синапс, строение нервной клетки

На конце Аксона расположены терминальные ветви – образования, которые отвечают за передачу сигналов к другим нейронам. В конце терминальных ветвей как раз и находятся синапсы. В них для передачи сигнала к другим нервным клеткам служат особые биологически активные химические вещества – нейромедиаторы.

Теги: мозг, нейрон, нервная система, строение

Есть что сказать? Оставть комментарий!:

Вывод

Физиология человека поражает своей слаженностью. Мозг стал величайшим творением эволюции. Если представлять организм в форме слаженной системы, то нейроны – это провода, по которым проходит сигнал от головного мозга и обратно. Их число огромно, они создают уникальную сеть в нашем организме. Ежесекундно по ней проходят тысячи сигналов. Это потрясающая система, которая позволяет не только функционировать организму, но и контактировать с окружающим миром.

Без невронов тело просто не сможет существовать, потому следует постоянно заботиться о состоянии своей нервной системы

Важно правильно питаться, избегать переутомления, стрессов, вовремя лечить заболевания


Строение нейрона - meduniver.com

Видео: Строение нейрона — meduniver.com

Содержание

  • Главное отличие — Аксон против Дендрита
  • Что такое аксон
  • Что такое дендрит
  • Сходства между аксоном и дендритом
  • Разница между аксоном и дендритом

Главное отличие — Аксон против Дендрита

Аксон и дендрит являются двумя компонентами нервных клеток. Нервные клетки являются структурными и функциональными единицами нервной системы животных. Они передают нервные импульсы в мозг, спинной мозг и тело, чтобы координировать функции организма. Аксон — это длинное коническое удлинение клеточного тела нервной клетки. У каждой нервной клетки есть аксон. Короткие структуры, которые простираются от тела клетки, называются дендритами.Одна нервная клетка имеет много дендритов. главное отличие между аксоном и дендритом является то, что аксон переносит нервные импульсы от тела клетки, тогда как дендриты переносят нервные импульсы от синапсов к телу клетки.

Ключевые области покрыты

1. Что такое аксон
      — определение, характеристики, функции
2. Что такое дендрит
      — определение, характеристики, функции
3. Каковы сходства между аксоном и дендритом
      — Краткое описание общих черт
4. В чем разница между аксоном и дендритом
      — Сравнение основных различий

Ключевые слова: аксон, аксонный бугорок, клеточное тело, дендриты, миелин, миелиновые нервные волокна, нервные клетки, немиелинизированные нервные волокна

Что такое аксон

Аксон — одиночная, длинная проекция нервной клетки. Аксоны уносят нервные импульсы от тела клетки. Мембрана, которая покрывает аксон, называется аксолеммой. Аксоплазма — это цитоплазма аксона. Аксоны разветвлены на своих терминальных концах. Кончики разветвленных концов образованы телодендрией. Терминалы аксона — это раздутые концы телодендрии. Терминалы аксона образуют синаптическую связь с дендроном другого нейрона или с эффекторным органом. Мембрана аксонного терминала связана с мембраной клетки-мишени. Везикулы, которые содержат нейротрансмиттеры, присутствуют в терминалах аксонов для передачи нервных импульсов посредством химических сигналов через синаптическую щель. Аксонный бугорок является начальным сегментом аксона. Это инициирует потенциал действия. Поперечное сечение аксона показано в Рисунок 1.

Рисунок 1: Поперечное сечение аксона
1 — аксон, 2 — ядро ​​клетки Шванна, 3 — клетка Шванна, 4 — миелиновая оболочка

Два типа аксонов — миелинизированные аксоны и немиелинизированные аксоны. Миелиновая оболочка образует изоляцию на аксоне, чтобы увеличить скорость передачи нервных импульсов через аксон. Этот тип передачи нервных импульсов называется солевой проводимостью. Клетки Шванна секретируют миелин на аксонах периферической нервной системы. Олигодендроциты выделяют миелин на аксонах центральной нервной системы. Миелинизированные аксоны белого цвета. Пробелы в миелиновой оболочке называются узлами Ранвье. Белое вещество головного и спинного мозга состоит из миелинизированных аксонов.

Что такое дендрит

Дендрит — это коротко-разветвленное расширение, которое переносит нервные импульсы в тело клетки из синапсов. Многие дендриты распространяются из одноклеточного тела нервной клетки. Дендриты являются сильно разветвленными структурами. Эта сильно разветвленная природа увеличивает площадь поверхности, которая может принимать сигналы от синапсов. Дендриты и аксоны нервных клеток показаны в фигура 2.

Рисунок 2: Дендриты и Аксоны

Дендриты имеют сужающиеся концы. Поскольку дендриты представляют собой короткие проекции, они не миелинизируются.

Сходства между аксоном и дендритом

  • И аксон, и дендрит являются проекциями клеточного тела нервной клетки.
  • И аксон, и дендрит передают нервные импульсы.
  • И аксон, и дендрит являются разветвленными структурами.
  • И аксон, и дендрит содержат нейрофибриллы.

Разница между аксоном и дендритом

Определение

Axon: Аксон — это длинная нитевидная часть нервной клетки, которая проводит нервные импульсы от тела клетки.

Dendrite: Дендрит — это короткое разветвленное расширение нервной клетки, которое передает нервные импульсы в тело клетки из синапсов.

Число

Axon: Нервная клетка имеет только один аксон.

Dendrite:  нервная клетка имеет много дендритов.

происхождения

Axon: Аксон возникает из конической проекции, называемой аксон бугорком.

Dendrite: Дендриты возникают непосредственно из нервной клетки.

длина

Axon: Аксоны очень длинные (несколько метров).

Dendrite: Дендриты очень короткие (около 1,5 мм).

Диаметр

Axon: Аксоны имеют одинаковый диаметр.

Dendrite: Дендриты имеют сужающиеся концы; поэтому диаметр постоянно уменьшается.

разветвление

Axon: Аксоны разветвлены на своих концах.

Dendrite: Дендриты все время разветвляются.

Синаптические ручки

Axon: Концы конечных ветвей аксона увеличены, чтобы сформировать синаптические ручки.

Dendrite: На кончиках ветвей дендритов не встречаются синаптические ручки.

Пузырьки

Axon: Синаптические ручки аксонов содержат везикулы с нейротрансмиттерами.

Dendrite: Дендриты не имеют пузырьков, которые содержат нейротрансмиттеры.

Гранулы Ниссля

Axon: Аксоны не содержат гранул Ниссля.

Dendrite: Дендриты содержат гранулы Ниссля.

Миелиновый / Non-миелинизированный

Axon: Аксоны могут быть миелинизированными или немиелинизированными.

Dendrite: Дендриты немиелинизированы.

Направление передачи

Axon: Аксоны уносят нервные импульсы от тела клетки.

Dendrite: Дендриты несут нервные импульсы к телу клетки.

Афферентные / Эфферентная

Axon: Аксоны образуют эфферентный компонент нервного импульса.

Dendrite: Дендриты образуют афферентный компонент нервного импульса.

Заключение

Аксон и дендрит — это два типа проекций нервной клетки. И аксоны, и дендриты передают нервные импульсы. Аксон длиннее дендрита. Диаметр аксона является однородным, в то время как дендриты состоят из сужающихся концов. Некоторые аксоны миелинизированы, чтобы ускорить передачу нервных импульсов. Аксоны передают нервные импульсы от тела клетки, а дендриты передают нервные импульсы к телу клетки. Поэтому основным отличием аксона от дендрита является направление передачи нервных импульсов.

Ссылка:

1. «Аксон». Википедия, Фонд Викимедиа, 1 сентября 2017 г.,

Axon
Blausen 0657 MultipolarNeuron.png

An axon of a multipolar neuron

Identifiers
MeSH D001369
FMA 67308
Anatomical terminology

[edit on Wikidata]

An axon (from Greek ἄξων áxōn, axis), or nerve fiber (or nerve fibre: see spelling differences), is a long, slender projection of a nerve cell, or neuron, in vertebrates, that typically conducts electrical impulses known as action potentials away from the nerve cell body. The function of the axon is to transmit information to different neurons, muscles, and glands. In certain sensory neurons (pseudounipolar neurons), such as those for touch and warmth, the axons are called afferent nerve fibers and the electrical impulse travels along these from the periphery to the cell body and from the cell body to the spinal cord along another branch of the same axon. Axon dysfunction can be the cause of many inherited and acquired neurological disorders that affect both the peripheral and central neurons. Nerve fibers are classed into three types – group A nerve fibers, group B nerve fibers, and group C nerve fibers. Groups A and B are myelinated, and group C are unmyelinated. These groups include both sensory fibers and motor fibers. Another classification groups only the sensory fibers as Type I, Type II, Type III, and Type IV.

An axon is one of two types of cytoplasmic protrusions from the cell body of a neuron; the other type is a dendrite. Axons are distinguished from dendrites by several features, including shape (dendrites often taper while axons usually maintain a constant radius), length (dendrites are restricted to a small region around the cell body while axons can be much longer), and function (dendrites receive signals whereas axons transmit them). Some types of neurons have no axon and transmit signals from their dendrites. In some species, axons can emanate from dendrites known as axon-carrying dendrites.[1] No neuron ever has more than one axon; however in invertebrates such as insects or leeches the axon sometimes consists of several regions that function more or less independently of each other.[2]

Axons are covered by a membrane known as an axolemma; the cytoplasm of an axon is called axoplasm. Most axons branch, in some cases very profusely. The end branches of an axon are called telodendria. The swollen end of a telodendron is known as the axon terminal which joins the dendron or cell body of another neuron forming a synaptic connection. Axons make contact with other cells – usually other neurons but sometimes muscle or gland cells – at junctions called synapses. In some circumstances, the axon of one neuron may form a synapse with the dendrites of the same neuron, resulting in an autapse. At a synapse, the membrane of the axon closely adjoins the membrane of the target cell, and special molecular structures serve to transmit electrical or electrochemical signals across the gap. Some synaptic junctions appear along the length of an axon as it extends; these are called en passant («in passing») synapses and can be in the hundreds or even the thousands along one axon.[3] Other synapses appear as terminals at the ends of axonal branches.

A single axon, with all its branches taken together, can innervate multiple parts of the brain and generate thousands of synaptic terminals. A bundle of axons make a nerve tract in the central nervous system,[4] and a fascicle in the peripheral nervous system. In placental mammals the largest white matter tract in the brain is the corpus callosum, formed of some 200 million axons in the human brain.[4]

Anatomy[edit]

A typical myelinated axon

Axons are the primary transmission lines of the nervous system, and as bundles they form nerves. Some axons can extend up to one meter or more while others extend as little as one millimeter. The longest axons in the human body are those of the sciatic nerve, which run from the base of the spinal cord to the big toe of each foot. The diameter of axons is also variable. Most individual axons are microscopic in diameter (typically about one micrometer (µm) across). The largest mammalian axons can reach a diameter of up to 20 µm. The squid giant axon, which is specialized to conduct signals very rapidly, is close to 1 millimeter in diameter, the size of a small pencil lead. The numbers of axonal telodendria (the branching structures at the end of the axon) can also differ from one nerve fiber to the next. Axons in the central nervous system (CNS) typically show multiple telodendria, with many synaptic end points. In comparison, the cerebellar granule cell axon is characterized by a single T-shaped branch node from which two parallel fibers extend. Elaborate branching allows for the simultaneous transmission of messages to a large number of target neurons within a single region of the brain.

There are two types of axons in the nervous system: myelinated and unmyelinated axons.[5] Myelin is a layer of a fatty insulating substance, which is formed by two types of glial cells: Schwann cells and oligodendrocytes. In the peripheral nervous system Schwann cells form the myelin sheath of a myelinated axon. Oligodendrocytes form the insulating myelin in the CNS. Along myelinated nerve fibers, gaps in the myelin sheath known as nodes of Ranvier occur at evenly spaced intervals. The myelination enables an especially rapid mode of electrical impulse propagation called saltatory conduction.

The myelinated axons from the cortical neurons form the bulk of the neural tissue called white matter in the brain. The myelin gives the white appearance to the tissue in contrast to the grey matter of the cerebral cortex which contains the neuronal cell bodies. A similar arrangement is seen in the cerebellum. Bundles of myelinated axons make up the nerve tracts in the CNS. Where these tracts cross the midline of the brain to connect opposite regions they are called commissures. The largest of these is the corpus callosum that connects the two cerebral hemispheres, and this has around 20 million axons.[4]

The structure of a neuron is seen to consist of two separate functional regions, or compartments – the cell body together with the dendrites as one region, and the axonal region as the other.

Axonal region[edit]

The axonal region or compartment, includes the axon hillock, the initial segment, the rest of the axon, and the axon telodendria, and axon terminals. It also includes the myelin sheath. The Nissl bodies that produce the neuronal proteins are absent in the axonal region.[3] Proteins needed for the growth of the axon, and the removal of waste materials, need a framework for transport. This axonal transport is provided for in the axoplasm by arrangements of microtubules and intermediate filaments known as neurofilaments.

Axon hillock[edit]

Detail showing microtubules at axon hillock and initial segment.

The axon hillock is the area formed from the cell body of the neuron as it extends to become the axon. It precedes the initial segment. The received action potentials that are summed in the neuron are transmitted to the axon hillock for the generation of an action potential from the initial segment.

Axonal initial segment[edit]

The axonal initial segment (AIS) is a structurally and functionally separate microdomain of the axon.[6][7] One function of the initial segment is to separate the main part of an axon from the rest of the neuron; another function is to help initiate action potentials.[8] Both of these functions support neuron cell polarity, in which dendrites (and, in some cases the soma) of a neuron receive input signals at the basal region, and at the apical region the neuron’s axon provides output signals.[9]

The axon initial segment is unmyelinated and contains a specialized complex of proteins. It is between approximately 20 and 60 µm in length and functions as the site of action potential initiation.[10][11] Both the position on the axon and the length of the AIS can change showing a degree of plasticity that can fine-tune the neuronal output.[10][12] A longer AIS is associated with a greater excitability.[12] Plasticity is also seen in the ability of the AIS to change its distribution and to maintain the activity of neural circuitry at a constant level.[13]

The AIS is highly specialized for the fast conduction of nerve impulses. This is achieved by a high concentration of voltage-gated sodium channels in the initial segment where the action potential is initiated.[13] The ion channels are accompanied by a high number of cell adhesion molecules and scaffolding proteins that anchor them to the cytoskeleton.[10] Interactions with ankyrin G are important as it is the major organizer in the AIS.[10]

Axonal transport[edit]

The axoplasm is the equivalent of cytoplasm in the cell. Microtubules form in the axoplasm at the axon hillock. They are arranged along the length of the axon, in overlapping sections, and all point in the same direction – towards the axon terminals.[14] This is noted by the positive endings of the microtubules. This overlapping arrangement provides the routes for the transport of different materials from the cell body.[14] Studies on the axoplasm has shown the movement of numerous vesicles of all sizes to be seen along cytoskeletal filaments – the microtubules, and neurofilaments, in both directions between the axon and its terminals and the cell body.

Outgoing anterograde transport from the cell body along the axon, carries mitochondria and membrane proteins needed for growth to the axon terminal. Ingoing retrograde transport carries cell waste materials from the axon terminal to the cell body.[15] Outgoing and ingoing tracks use different sets of motor proteins.[14] Outgoing transport is provided by kinesin, and ingoing return traffic is provided by dynein. Dynein is minus-end directed.[15] There are many forms of kinesin and dynein motor proteins, and each is thought to carry a different cargo.[14] The studies on transport in the axon led to the naming of kinesin.[14]

Myelination[edit]

TEM of a myelinated axon in cross-section.

In the nervous system, axons may be myelinated, or unmyelinated. This is the provision of an insulating layer, called a myelin sheath. The myelin membrane is unique in its relatively high lipid to protein ratio.[16]

In the peripheral nervous system axons are myelinated by glial cells known as Schwann cells. In the central nervous system the myelin sheath is provided by another type of glial cell, the oligodendrocyte. Schwann cells myelinate a single axon. An oligodendrocyte can myelinate up to 50 axons.[17]

The composition of myelin is different in the two types. In the CNS the major myelin protein is proteolipid protein, and in the PNS it is myelin basic protein.

Nodes of Ranvier[edit]

Nodes of Ranvier (also known as myelin sheath gaps) are short unmyelinated segments of a myelinated axon, which are found periodically interspersed between segments of the myelin sheath. Therefore, at the point of the node of Ranvier, the axon is reduced in diameter.[18] These nodes are areas where action potentials can be generated. In saltatory conduction, electrical currents produced at each node of Ranvier are conducted with little attenuation to the next node in line, where they remain strong enough to generate another action potential. Thus in a myelinated axon, action potentials effectively «jump» from node to node, bypassing the myelinated stretches in between, resulting in a propagation speed much faster than even the fastest unmyelinated axon can sustain.

Axon terminals[edit]

An axon can divide into many branches called telodendria (Greek for ‘end of tree’). At the end of each telodendron is an axon terminal (also called a synaptic bouton, or terminal bouton). Axon terminals contain synaptic vesicles that store the neurotransmitter for release at the synapse. This makes multiple synaptic connections with other neurons possible. Sometimes the axon of a neuron may synapse onto dendrites of the same neuron, when it is known as an autapse.

Action potentials[edit]

Structure of a typical chemical synapse

An illustrated chemical synapse

Postsynaptic
density

Voltage-
gated Ca++
channel

Synaptic
vesicle

Neurotransmitter
transporter

Receptor

Neurotransmitter

Axon terminal

Synaptic cleft

Dendrite

Most axons carry signals in the form of action potentials, which are discrete electrochemical impulses that travel rapidly along an axon, starting at the cell body and terminating at points where the axon makes synaptic contact with target cells. The defining characteristic of an action potential is that it is «all-or-nothing» – every action potential that an axon generates has essentially the same size and shape. This all-or-nothing characteristic allows action potentials to be transmitted from one end of a long axon to the other without any reduction in size. There are, however, some types of neurons with short axons that carry graded electrochemical signals, of variable amplitude.

When an action potential reaches a presynaptic terminal, it activates the synaptic transmission process. The first step is rapid opening of calcium ion channels in the membrane of the axon, allowing calcium ions to flow inward across the membrane. The resulting increase in intracellular calcium concentration causes synaptic vesicles (tiny containers enclosed by a lipid membrane) filled with a neurotransmitter chemical to fuse with the axon’s membrane and empty their contents into the extracellular space. The neurotransmitter is released from the presynaptic nerve through exocytosis. The neurotransmitter chemical then diffuses across to receptors located on the membrane of the target cell. The neurotransmitter binds to these receptors and activates them. Depending on the type of receptors that are activated, the effect on the target cell can be to excite the target cell, inhibit it, or alter its metabolism in some way. This entire sequence of events often takes place in less than a thousandth of a second. Afterward, inside the presynaptic terminal, a new set of vesicles is moved into position next to the membrane, ready to be released when the next action potential arrives. The action potential is the final electrical step in the integration of synaptic messages at the scale of the neuron.[5]

(A) pyramidal cell, interneuron, and short durationwaveform (Axon), overlay of the three average waveforms;
(B) Average and standard error of peak-trough time for pyramidal cells interneurons, and putative axons;
(C) Scatter plot of signal to noise ratios for individual units againstpeak-trough time for axons, pyramidal cells (PYR) and interneurons (INT).

Extracellular recordings of action potential propagation in axons has been demonstrated in freely moving animals. While extracellular somatic action potentials have been used to study cellular activity in freely moving animals such as place cells, axonal activity in both white and gray matter can also be recorded. Extracellular recordings of axon action potential propagation is distinct from somatic action potentials in three ways: 1. The signal has a shorter peak-trough duration (~150μs) than of pyramidal cells (~500μs) or interneurons (~250μs). 2. The voltage change is triphasic. 3. Activity recorded on a tetrode is seen on only one of the four recording wires. In recordings from freely moving rats, axonal signals have been isolated in white matter tracts including the alveus and the corpus callosum as well hippocampal gray matter.[19]

In fact, the generation of action potentials in vivo is sequential in nature, and these sequential spikes constitute the digital codes in the neurons. Although previous studies indicate an axonal origin of a single spike evoked by short-term pulses, physiological signals in vivo trigger the initiation of sequential spikes at the cell bodies of the neurons.[20][21]

In addition to propagating action potentials to axonal terminals, the axon is able to amplify the action potentials, which makes sure a secure propagation of sequential action potentials toward the axonal terminal. In terms of molecular mechanisms, voltage-gated sodium channels in the axons possess lower threshold and shorter refractory period in response to short-term pulses.[22]

Development and growth[edit]

Development[edit]

The development of the axon to its target, is one of the six major stages in the overall development of the nervous system.[23] Studies done on cultured hippocampal neurons suggest that neurons initially produce multiple neurites that are equivalent, yet only one of these neurites is destined to become the axon.[24] It is unclear whether axon specification precedes axon elongation or vice versa,[25] although recent evidence points to the latter. If an axon that is not fully developed is cut, the polarity can change and other neurites can potentially become the axon. This alteration of polarity only occurs when the axon is cut at least 10 μm shorter than the other neurites. After the incision is made, the longest neurite will become the future axon and all the other neurites, including the original axon, will turn into dendrites.[26] Imposing an external force on a neurite, causing it to elongate, will make it become an axon.[27] Nonetheless, axonal development is achieved through a complex interplay between extracellular signaling, intracellular signaling and cytoskeletal dynamics.

[edit]

The extracellular signals that propagate through the extracellular matrix surrounding neurons play a prominent role in axonal development.[28] These signaling molecules include proteins, neurotrophic factors, and extracellular matrix and adhesion molecules.
Netrin (also known as UNC-6) a secreted protein, functions in axon formation. When the UNC-5 netrin receptor is mutated, several neurites are irregularly projected out of neurons and finally a single axon is extended anteriorly.[29][30][31][32] The neurotrophic factors – nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NTF3) are also involved in axon development and bind to Trk receptors.[33]

The ganglioside-converting enzyme plasma membrane ganglioside sialidase (PMGS), which is involved in the activation of TrkA at the tip of neutrites, is required for the elongation of axons. PMGS asymmetrically distributes to the tip of the neurite that is destined to become the future axon.[34]

Intracellular signaling[edit]

During axonal development, the activity of PI3K is increased at the tip of destined axon. Disrupting the activity of PI3K inhibits axonal development. Activation of PI3K results in the production of phosphatidylinositol (3,4,5)-trisphosphate (PtdIns) which can cause significant elongation of a neurite, converting it into an axon. As such, the overexpression of phosphatases that dephosphorylate PtdIns leads into the failure of polarization.[28]

Cytoskeletal dynamics[edit]

The neurite with the lowest actin filament content will become the axon. PGMS concentration and f-actin content are inversely correlated; when PGMS becomes enriched at the tip of a neurite, its f-actin content is substantially decreased.[34] In addition, exposure to actin-depolimerizing drugs and toxin B (which inactivates Rho-signaling) causes the formation of multiple axons. Consequently, the interruption of the actin network in a growth cone will promote its neurite to become the axon.[35]

Growth[edit]

Axon of nine-day-old mouse with growth cone visible

Growing axons move through their environment via the growth cone, which is at the tip of the axon. The growth cone has a broad sheet-like extension called a lamellipodium which contain protrusions called filopodia. The filopodia are the mechanism by which the entire process adheres to surfaces and explores the surrounding environment. Actin plays a major role in the mobility of this system. Environments with high levels of cell adhesion molecules (CAMs) create an ideal environment for axonal growth. This seems to provide a «sticky» surface for axons to grow along. Examples of CAMs specific to neural systems include N-CAM, TAG-1 – an axonal glycoprotein[36] – and MAG, all of which are part of the immunoglobulin superfamily. Another set of molecules called extracellular matrix-adhesion molecules also provide a sticky substrate for axons to grow along. Examples of these molecules include laminin, fibronectin, tenascin, and perlecan. Some of these are surface bound to cells and thus act as short range attractants or repellents. Others are difusible ligands and thus can have long range effects.

Cells called guidepost cells assist in the guidance of neuronal axon growth. These cells that help axon guidance, are typically other neurons that are sometimes immature. When the axon has completed its growth at its connection to the target, the diameter of the axon can increase by up to five times, depending on the speed of conduction required.[37]

It has also been discovered through research that if the axons of a neuron were damaged, as long as the soma (the cell body of a neuron) is not damaged, the axons would regenerate and remake the synaptic connections with neurons with the help of guidepost cells. This is also referred to as neuroregeneration.[38]

Nogo-A is a type of neurite outgrowth inhibitory component that is present in the central nervous system myelin membranes (found in an axon). It has a crucial role in restricting axonal regeneration in adult mammalian central nervous system. In recent studies, if Nogo-A is blocked and neutralized, it is possible to induce long-distance axonal regeneration which leads to enhancement of functional recovery in rats and mouse spinal cord. This has yet to be done on humans.[39] A recent study has also found that macrophages activated through a specific inflammatory pathway activated by the Dectin-1 receptor are capable of promoting axon recovery, also however causing neurotoxicity in the neuron.[40]

Length regulation[edit]

Axons vary largely in length from a few micrometers up to meters in some animals. This emphasizes that there must be a cellular length regulation mechanism allowing the neurons both to sense the length of their axons and to control their growth accordingly. It was discovered that motor proteins play an important role in regulating the length of axons.[41] Based on this observation, researchers developed an explicit model for axonal growth describing how motor proteins could affect the axon length on the molecular level.[42][43][44][45] These studies suggest that motor proteins carry signaling molecules from the soma to the growth cone and vice versa whose concentration oscillates in time with a length-dependent frequency.

Classification[edit]

The axons of neurons in the human peripheral nervous system can be classified based on their physical features and signal conduction properties. Axons were known to have different thicknesses (from 0.1 to 20 µm)[3] and these differences were thought to relate to the speed at which an action potential could travel along the axon – its conductance velocity. Erlanger and Gasser proved this hypothesis, and identified several types of nerve fiber, establishing a relationship between the diameter of an axon and its nerve conduction velocity. They published their findings in 1941 giving the first classification of axons.

Axons are classified in two systems. The first one introduced by Erlanger and Gasser, grouped the fibers into three main groups using the letters A, B, and C. These groups, group A, group B, and group C include both the sensory fibers (afferents) and the motor fibers (efferents). The first group A, was subdivided into alpha, beta, gamma, and delta fibers – Aα, Aβ, Aγ, and Aδ. The motor neurons of the different motor fibers, were the lower motor neurons – alpha motor neuron, beta motor neuron, and gamma motor neuron having the Aα, Aβ, and Aγ nerve fibers, respectively.

Later findings by other researchers identified two groups of Aa fibers that were sensory fibers. These were then introduced into a system that only included sensory fibers (though some of these were mixed nerves and were also motor fibers). This system refers to the sensory groups as Types and uses Roman numerals: Type Ia, Type Ib, Type II, Type III, and Type IV.

Motor[edit]

Lower motor neurons have two kind of fibers:

Motor fiber types

Type Erlanger-Gasser
Classification
Diameter
(µm)
Myelin Conduction velocity
(meters/second)
Associated muscle fibers
Alpha (α) motor neuron 13–20 Yes 80–120 Extrafusal muscle fibers
Beta (β) motor neuron
Gamma (γ) motor neuron 5-8 Yes 4–24[46][47] Intrafusal muscle fibers

Sensory[edit]

Different sensory receptors innervate different types of nerve fibers. Proprioceptors are innervated by type Ia, Ib and II sensory fibers, mechanoreceptors by type II and III sensory fibers and nociceptors and thermoreceptors by type III and IV sensory fibers.

Sensory fiber types

Type Erlanger-Gasser
Classification
Diameter
(µm)
Myelin Conduction
velocity (m/s)
Associated sensory receptors Proprioceptors Mechanoceptors Nociceptors and
thermoreceptors
Ia 13–20 Yes 80–120 Primary receptors of muscle spindle (annulospiral ending)
Ib 13–20 Yes 80–120 Golgi tendon organ
II 6–12 Yes 33–75 Secondary receptors of muscle spindle (flower-spray ending).
All cutaneous mechanoreceptors
III 1–5 Thin 3–30 Free nerve endings of touch and pressure
Nociceptors of lateral spinothalamic tract
Cold thermoreceptors
IV C 0.2–1.5 No 0.5–2.0 Nociceptors of anterior spinothalamic tract
Warmth receptors

Autonomic[edit]

The autonomic nervous system has two kinds of peripheral fibers:

Fiber types

Type Erlanger-Gasser
Classification
Diameter
(µm)
Myelin[48] Conduction
velocity (m/s)
preganglionic fibers B 1–5 Yes 3–15
postganglionic fibers C 0.2–1.5 No 0.5–2.0

Clinical significance[edit]

In order of degree of severity, injury to a nerve can be described as neurapraxia, axonotmesis, or neurotmesis.
Concussion is considered a mild form of diffuse axonal injury.[49] Axonal injury can also cause central chromatolysis. The dysfunction of axons in the nervous system is one of the major causes of many inherited neurological disorders that affect both peripheral and central neurons.[5]

When an axon is crushed, an active process of axonal degeneration takes place at the part of the axon furthest from the cell body. This degeneration takes place quickly following the injury, with the part of the axon being sealed off at the membranes and broken down by macrophages. This is known as Wallerian degeneration.[50] Dying back of an axon can also take place in many neurodegenerative diseases, particularly when axonal transport is impaired, this is known as Wallerian-like degeneration.[51] Studies suggest that the degeneration happens as
a result of the axonal protein NMNAT2, being prevented from reaching all of the axon.[52]

Demyelination of axons causes the multitude of neurological symptoms found in the disease multiple sclerosis.

Dysmyelination is the abnormal formation of the myelin sheath. This is implicated in several leukodystrophies, and also in schizophrenia.[53][54][55]

A severe traumatic brain injury can result in widespread lesions to nerve tracts damaging the axons in a condition known as diffuse axonal injury. This can lead to a persistent vegetative state.[56] It has been shown in studies on the rat that axonal damage from a single mild traumatic brain injury, can leave a susceptibility to further damage, after repeated mild traumatic brain injuries.[57]

A nerve guidance conduit is an artificial means of guiding axon growth to enable neuroregeneration, and is one of the many treatments used for different kinds of nerve injury.

History[edit]

German anatomist Otto Friedrich Karl Deiters is generally credited with the discovery of the axon by distinguishing it from the dendrites.[5] Swiss Rüdolf Albert von Kölliker and German Robert Remak were the first to identify and characterize the axon initial segment. Kölliker named the axon in 1896.[58] Louis-Antoine Ranvier was the first to describe the gaps or nodes found on axons and for this contribution these axonal features are now commonly referred to as the nodes of Ranvier. Santiago Ramón y Cajal, a Spanish anatomist, proposed that axons were the output components of neurons, describing their functionality.[5] Joseph Erlanger and Herbert Gasser earlier developed the classification system for peripheral nerve fibers,[59] based on axonal conduction velocity, myelination, fiber size etc. Alan Hodgkin and Andrew Huxley also employed the squid giant axon (1939) and by 1952 they had obtained a full quantitative description of the ionic basis of the action potential, leading to the formulation of the Hodgkin–Huxley model. Hodgkin and Huxley were awarded jointly the Nobel Prize for this work in 1963. The formulae detailing axonal conductance were extended to vertebrates in the Frankenhaeuser–Huxley equations. The understanding of the biochemical basis for action potential propagation has advanced further, and includes many details about individual ion channels.

Other animals[edit]

The axons in invertebrates have been extensively studied. The longfin inshore squid, often used as a model organism has the longest known axon.[60] The giant squid has the largest axon known. Its size ranges from 0.5 (typically) to 1 mm in diameter and is used in the control of its jet propulsion system. The fastest recorded conduction speed of 210 m/s, is found in the ensheathed axons of some pelagic Penaeid shrimps[61] and the usual range is between 90 and 200 meters/s[62] (cf 100–120 m/s for the fastest myelinated vertebrate axon.)

In other cases as seen in rat studies an axon originates from a dendrite; such axons are said to have «dendritic origin». Some axons with dendritic origin similarly have a «proximal» initial segment that starts directly at the axon origin, while others have a «distal» initial segment, discernibly separated from the axon origin.[63] In many species some of the neurons have axons that emanate from the dendrite and not from the cell body, and these are known as axon-carrying dendrites.[1] In many cases, an axon originates at an axon hillock on the soma; such axons are said to have «somatic origin». Some axons with somatic origin have a «proximal» initial segment adjacent the axon hillock, while others have a «distal» initial segment, separated from the soma by an extended axon hillock.[63]

See also[edit]

  • Electrophysiology
  • Ganglionic eminence
  • Giant axonal neuropathy
  • Neuronal tracing
  • Pioneer axon

References[edit]

  1. ^ a b Triarhou LC (2014). «Axons emanating from dendrites: phylogenetic repercussions with Cajalian hues». Frontiers in Neuroanatomy. 8: 133. doi:10.3389/fnana.2014.00133. PMC 4235383. PMID 25477788.
  2. ^ Yau KW (December 1976). «Receptive fields, geometry and conduction block of sensory neurones in the central nervous system of the leech». The Journal of Physiology. 263 (3): 513–38. doi:10.1113/jphysiol.1976.sp011643. PMC 1307715. PMID 1018277.
  3. ^ a b c Squire, Larry (2013). Fundamental neuroscience (4th ed.). Amsterdam: Elsevier/Academic Press. pp. 61–65. ISBN 978-0-12-385-870-2.
  4. ^ a b c Luders E, Thompson PM, Toga AW (August 2010). «The development of the corpus callosum in the healthy human brain». The Journal of Neuroscience. 30 (33): 10985–90. doi:10.1523/JNEUROSCI.5122-09.2010. PMC 3197828. PMID 20720105.
  5. ^ a b c d e Debanne D, Campanac E, Bialowas A, Carlier E, Alcaraz G (April 2011). «Axon physiology» (PDF). Physiological Reviews. 91 (2): 555–602. doi:10.1152/physrev.00048.2009. PMID 21527732. S2CID 13916255.
  6. ^ Nelson AD, Jenkins PM (2017). «Axonal Membranes and Their Domains: Assembly and Function of the Axon Initial Segment and Node of Ranvier». Frontiers in Cellular Neuroscience. 11: 136. doi:10.3389/fncel.2017.00136. PMC 5422562. PMID 28536506.
  7. ^ Leterrier C, Clerc N, Rueda-Boroni F, Montersino A, Dargent B, Castets F (2017). «Ankyrin G Membrane Partners Drive the Establishment and Maintenance of the Axon Initial Segment». Frontiers in Cellular Neuroscience. 11: 6. doi:10.3389/fncel.2017.00006. PMC 5266712. PMID 28184187.
  8. ^ Leterrier C (February 2018). «The Axon Initial Segment: An Updated Viewpoint». The Journal of Neuroscience. 38 (9): 2135–2145. doi:10.1523/jneurosci.1922-17.2018. PMC 6596274. PMID 29378864.
  9. ^ Rasband MN (August 2010). «The axon initial segment and the maintenance of neuronal polarity». Nature Reviews. Neuroscience. 11 (8): 552–62. doi:10.1038/nrn2852. PMID 20631711. S2CID 23996233.
  10. ^ a b c d Jones SL, Svitkina TM (2016). «Axon Initial Segment Cytoskeleton: Architecture, Development, and Role in Neuron Polarity». Neural Plasticity. 2016: 6808293. doi:10.1155/2016/6808293. PMC 4967436. PMID 27493806.
  11. ^ Clark BD, Goldberg EM, Rudy B (December 2009). «Electrogenic tuning of the axon initial segment». The Neuroscientist. 15 (6): 651–68. doi:10.1177/1073858409341973. PMC 2951114. PMID 20007821.
  12. ^ a b Yamada R, Kuba H (2016). «Structural and Functional Plasticity at the Axon Initial Segment». Frontiers in Cellular Neuroscience. 10: 250. doi:10.3389/fncel.2016.00250. PMC 5078684. PMID 27826229.
  13. ^ a b Susuki K, Kuba H (March 2016). «Activity-dependent regulation of excitable axonal domains». The Journal of Physiological Sciences. 66 (2): 99–104. doi:10.1007/s12576-015-0413-4. PMID 26464228. S2CID 18862030.
  14. ^ a b c d e Alberts B (2004). Essential cell biology: an introduction to the molecular biology of the cell (2nd ed.). New York: Garland. pp. 584–587. ISBN 978-0-8153-3481-1.
  15. ^ a b Alberts B (2002). Molecular biology of the cell (4th ed.). New York: Garland. pp. 979–981. ISBN 978-0-8153-4072-0.
  16. ^ Ozgen, H; Baron, W; Hoekstra, D; Kahya, N (September 2016). «Oligodendroglial membrane dynamics in relation to myelin biogenesis». Cellular and Molecular Life Sciences. 73 (17): 3291–310. doi:10.1007/s00018-016-2228-8. PMC 4967101. PMID 27141942.
  17. ^ Sadler, T. (2010). Langman’s medical embryology (11th ed.). Philadelphia: Lippincott William & Wilkins. p. 300. ISBN 978-0-7817-9069-7.
  18. ^ Hess A, Young JZ (November 1952). «The nodes of Ranvier». Proceedings of the Royal Society of London. Series B, Biological Sciences. Series B. 140 (900): 301–20. Bibcode:1952RSPSB.140..301H. doi:10.1098/rspb.1952.0063. JSTOR 82721. PMID 13003931. S2CID 11963512.
  19. ^ Robbins AA, Fox SE, Holmes GL, Scott RC, Barry JM (November 2013). «Short duration waveforms recorded extracellularly from freely moving rats are representative of axonal activity». Frontiers in Neural Circuits. 7 (181): 181. doi:10.3389/fncir.2013.00181. PMC 3831546. PMID 24348338.
  20. ^ Rongjing Ge, Hao Qian and Jin-Hui Wang* (2011) Molecular Brain 4(19), 1~11
  21. ^ Rongjing Ge, Hao Qian, Na Chen and Jin-Hui Wang* (2014) Molecular Brain 7(26):1-16
  22. ^ Chen N, Yu J, Qian H, Ge R, Wang JH (July 2010). «Axons amplify somatic incomplete spikes into uniform amplitudes in mouse cortical pyramidal neurons». PLOS ONE. 5 (7): e11868. Bibcode:2010PLoSO…511868C. doi:10.1371/journal.pone.0011868. PMC 2912328. PMID 20686619.
  23. ^ Wolpert, Lewis (2015). Principles of development (5th ed.). pp. 520–524. ISBN 978-0-19-967814-3.
  24. ^ Fletcher TL, Banker GA (December 1989). «The establishment of polarity by hippocampal neurons: the relationship between the stage of a cell’s development in situ and its subsequent development in culture». Developmental Biology. 136 (2): 446–54. doi:10.1016/0012-1606(89)90269-8. PMID 2583372.
  25. ^ Jiang H, Rao Y (May 2005). «Axon formation: fate versus growth». Nature Neuroscience. 8 (5): 544–6. doi:10.1038/nn0505-544. PMID 15856056. S2CID 27728967.
  26. ^ Goslin K, Banker G (April 1989). «Experimental observations on the development of polarity by hippocampal neurons in culture». The Journal of Cell Biology. 108 (4): 1507–16. doi:10.1083/jcb.108.4.1507. PMC 2115496. PMID 2925793.
  27. ^ Lamoureux P, Ruthel G, Buxbaum RE, Heidemann SR (November 2002). «Mechanical tension can specify axonal fate in hippocampal neurons». The Journal of Cell Biology. 159 (3): 499–508. doi:10.1083/jcb.200207174. PMC 2173080. PMID 12417580.
  28. ^ a b Arimura N, Kaibuchi K (March 2007). «Neuronal polarity: from extracellular signals to intracellular mechanisms». Nature Reviews. Neuroscience. 8 (3): 194–205. doi:10.1038/nrn2056. PMID 17311006. S2CID 15556921.
  29. ^ Neuroglia and pioneer neurons express UNC-6 to provide global and local netrin cues for guiding migrations in C. elegans
  30. ^ Serafini T, Kennedy TE, Galko MJ, Mirzayan C, Jessell TM, Tessier-Lavigne M (August 1994). «The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6». Cell. 78 (3): 409–24. doi:10.1016/0092-8674(94)90420-0. PMID 8062384. S2CID 22666205.
  31. ^ Hong K, Hinck L, Nishiyama M, Poo MM, Tessier-Lavigne M, Stein E (June 1999). «A ligand-gated association between cytoplasmic domains of UNC5 and DCC family receptors converts netrin-induced growth cone attraction to repulsion». Cell. 97 (7): 927–41. doi:10.1016/S0092-8674(00)80804-1. PMID 10399920. S2CID 18043414.
  32. ^ Hedgecock EM, Culotti JG, Hall DH (January 1990). «The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans». Neuron. 4 (1): 61–85. doi:10.1016/0896-6273(90)90444-K. PMID 2310575. S2CID 23974242.
  33. ^ Huang EJ, Reichardt LF (2003). «Trk receptors: roles in neuronal signal transduction». Annual Review of Biochemistry. 72: 609–42. doi:10.1146/annurev.biochem.72.121801.161629. PMID 12676795. S2CID 10217268.
  34. ^ a b Da Silva JS, Hasegawa T, Miyagi T, Dotti CG, Abad-Rodriguez J (May 2005). «Asymmetric membrane ganglioside sialidase activity specifies axonal fate». Nature Neuroscience. 8 (5): 606–15. doi:10.1038/nn1442. PMID 15834419. S2CID 25227765.
  35. ^ Bradke F, Dotti CG (March 1999). «The role of local actin instability in axon formation». Science. 283 (5409): 1931–4. Bibcode:1999Sci…283.1931B. doi:10.1126/science.283.5409.1931. PMID 10082468.
  36. ^ Furley AJ, Morton SB, Manalo D, Karagogeos D, Dodd J, Jessell TM (April 1990). «The axonal glycoprotein TAG-1 is an immunoglobulin superfamily member with neurite outgrowth-promoting activity». Cell. 61 (1): 157–70. doi:10.1016/0092-8674(90)90223-2. PMID 2317872. S2CID 28813676.
  37. ^ Alberts, Bruce (2015). Molecular biology of the cell (Sixth ed.). p. 947. ISBN 9780815344643.
  38. ^ Kunik D, Dion C, Ozaki T, Levin LA, Costantino S (2011). «Laser-based single-axon transection for high-content axon injury and regeneration studies». PLOS ONE. 6 (11): e26832. Bibcode:2011PLoSO…626832K. doi:10.1371/journal.pone.0026832. PMC 3206876. PMID 22073205.
  39. ^ Schwab ME (February 2004). «Nogo and axon regeneration». Current Opinion in Neurobiology. 14 (1): 118–24. doi:10.1016/j.conb.2004.01.004. PMID 15018947. S2CID 9672315.
  40. ^ Gensel JC, Nakamura S, Guan Z, van Rooijen N, Ankeny DP, Popovich PG (March 2009). «Macrophages promote axon regeneration with concurrent neurotoxicity». The Journal of Neuroscience. 29 (12): 3956–68. doi:10.1523/JNEUROSCI.3992-08.2009. PMC 2693768. PMID 19321792.
  41. ^ Myers KA, Baas PW (September 2007). «Kinesin-5 regulates the growth of the axon by acting as a brake on its microtubule array». The Journal of Cell Biology. 178 (6): 1081–91. doi:10.1083/jcb.200702074. PMC 2064629. PMID 17846176.
  42. ^ Rishal I, Kam N, Perry RB, Shinder V, Fisher EM, Schiavo G, Fainzilber M (June 2012). «A motor-driven mechanism for cell-length sensing». Cell Reports. 1 (6): 608–16. doi:10.1016/j.celrep.2012.05.013. PMC 3389498. PMID 22773964.
  43. ^ Karamched BR, Bressloff PC (May 2015). «Delayed feedback model of axonal length sensing». Biophysical Journal. 108 (9): 2408–19. Bibcode:2015BpJ…108.2408K. doi:10.1016/j.bpj.2015.03.055. PMC 4423051. PMID 25954897.
  44. ^ Bressloff PC, Karamched BR (2015). «A frequency-dependent decoding mechanism for axonal length sensing». Frontiers in Cellular Neuroscience. 9: 281. doi:10.3389/fncel.2015.00281. PMC 4508512. PMID 26257607.
  45. ^ Folz F, Wettmann L, Morigi G, Kruse K (May 2019). «Sound of an axon’s growth». Physical Review E. 99 (5–1): 050401. arXiv:1807.04799. Bibcode:2019PhRvE..99e0401F. doi:10.1103/PhysRevE.99.050401. PMID 31212501. S2CID 118682719.
  46. ^ Andrew BL, Part NJ (April 1972). «Properties of fast and slow motor units in hind limb and tail muscles of the rat». Quarterly Journal of Experimental Physiology and Cognate Medical Sciences. 57 (2): 213–25. doi:10.1113/expphysiol.1972.sp002151. PMID 4482075.
  47. ^ Russell NJ (January 1980). «Axonal conduction velocity changes following muscle tenotomy or deafferentation during development in the rat». The Journal of Physiology. 298: 347–60. doi:10.1113/jphysiol.1980.sp013085. PMC 1279120. PMID 7359413.
  48. ^ Pocock G, Richards CD, et al. (2004). Human Physiology (2nd ed.). New York: Oxford University Press. pp. 187–189. ISBN 978-0-19-858527-5.
  49. ^ Dawodu ST (16 August 2017). «Traumatic Brain Injury (TBI) — Definition, Epidemiology, Pathophysiology». Medscape. Archived from the original on 12 June 2018. Retrieved 14 July 2018.
  50. ^ Trauma and Wallerian Degeneration Archived 2 May 2006 at the Wayback Machine, University of California, San Francisco
  51. ^ Coleman MP, Freeman MR (1 June 2010). «Wallerian degeneration, wld(s), and nmnat». Annual Review of Neuroscience. 33 (1): 245–67. doi:10.1146/annurev-neuro-060909-153248. PMC 5223592. PMID 20345246.
  52. ^ Gilley J, Coleman MP (January 2010). «Endogenous Nmnat2 is an essential survival factor for maintenance of healthy axons». PLOS Biology. 8 (1): e1000300. doi:10.1371/journal.pbio.1000300. PMC 2811159. PMID 20126265.
  53. ^ Krämer-Albers EM, Gehrig-Burger K, Thiele C, Trotter J, Nave KA (November 2006). «Perturbed interactions of mutant proteolipid protein/DM20 with cholesterol and lipid rafts in oligodendroglia: implications for dysmyelination in spastic paraplegia». The Journal of Neuroscience. 26 (45): 11743–52. doi:10.1523/JNEUROSCI.3581-06.2006. PMC 6674790. PMID 17093095.
  54. ^ Matalon R, Michals-Matalon K, Surendran S, Tyring SK (2006). «Canavan disease: studies on the knockout mouse». N-Acetylaspartate. Adv. Exp. Med. Biol. Advances in Experimental Medicine and Biology. Vol. 576. pp. 77–93, discussion 361–3. doi:10.1007/0-387-30172-0_6. ISBN 978-0-387-30171-6. PMID 16802706. S2CID 44405442.
  55. ^ Tkachev D, Mimmack ML, Huffaker SJ, Ryan M, Bahn S (August 2007). «Further evidence for altered myelin biosynthesis and glutamatergic dysfunction in schizophrenia». The International Journal of Neuropsychopharmacology. 10 (4): 557–63. doi:10.1017/S1461145706007334. PMID 17291371.
  56. ^ «Brain Injury, Traumatic». Medcyclopaedia. GE. Archived from the original on 26 May 2011. Retrieved 20 June 2018.
  57. ^ Wright DK, Brady RD, Kamnaksh A, Trezise J, Sun M, McDonald SJ, et al. (October 2019). «Repeated mild traumatic brain injuries induce persistent changes in plasma protein and magnetic resonance imaging biomarkers in the rat». Scientific Reports. 9 (1): 14626. Bibcode:2019NatSR…914626W. doi:10.1038/s41598-019-51267-w. PMC 6787341. PMID 31602002.
  58. ^ Finger S (1994). Origins of neuroscience: a history of explorations into brain function. Oxford University Press. p. 47. ISBN 9780195146943. OCLC 27151391. Kölliker would give the «axon» its name in 1896.
  59. ^ Grant G (December 2006). «The 1932 and 1944 Nobel Prizes in physiology or medicine: rewards for ground-breaking studies in neurophysiology». Journal of the History of the Neurosciences. 15 (4): 341–57. doi:10.1080/09647040600638981. PMID 16997762. S2CID 37676544.
  60. ^ Hellier, Jennifer L. (16 December 2014). The Brain, the Nervous System, and Their Diseases [3 volumes]. ABC-CLIO. ISBN 9781610693387. Archived from the original on 14 March 2018.
  61. ^ Hsu K, Terakawa S (July 1996). «Fenestration in the myelin sheath of nerve fibers of the shrimp: a novel node of excitation for saltatory conduction». Journal of Neurobiology. 30 (3): 397–409. doi:10.1002/(SICI)1097-4695(199607)30:3<397::AID-NEU8>3.0.CO;2-#. PMID 8807532.
  62. ^ Salzer JL, Zalc B (October 2016). «Myelination». Current Biology. 26 (20): R971–R975. doi:10.1016/j.cub.2016.07.074. PMID 27780071.
  63. ^ a b Höfflin F, Jack A, Riedel C, Mack-Bucher J, Roos J, Corcelli C, et al. (2017). «Heterogeneity of the Axon Initial Segment in Interneurons and Pyramidal Cells of Rodent Visual Cortex». Frontiers in Cellular Neuroscience. 11: 332. doi:10.3389/fncel.2017.00332. PMC 5684645. PMID 29170630.

External links[edit]

  • Histology image: 3_09 at the University of Oklahoma Health Sciences Center – «Slide 3 Spinal cord»

Длинная проекция на нейрон, который отводит сигналы

Аксон
Blausen 0657 MultipolarNeuron.png Аксон многополярного нейрона
Идентификаторы
MeSH D001369
Анатомическая терминология [редактировать в Викиданных ]

аксон (от греческого ἄξων áxōn, ось) или нервное волокно (или нерв волокно : см. орфографические различия ), представляет собой длинный тонкий выступ нервной клетки или нейрона у позвоночных, который обычно проводит электрические импульсы, известные как потенциалы действия, от тела нервной клетки. Функция аксона — передавать информацию различным нейронам, мышцам и железам. В некоторых сенсорных нейронах (псевдоуниполярных нейронах ), таких как нейроны прикосновения и тепла, аксоны называются афферентными нервными волокнами, и электрический импульс проходит по ним от периферия к телу клетки и от тела клетки к спинному мозгу вдоль другой ветви того же аксона. Дисфункция аксонов является причиной многих наследственных и приобретенных неврологических расстройств, которые могут поражать как периферические, так и центральные нейроны. Нервные волокна классифицируются на три типа — нервные волокна группы A, нервные волокна группы B и нервные волокна группы C. Группы A и B являются миелинизированными, а группа C немиелинизированными. Эти группы включают как сенсорные волокна, так и двигательные волокна. Другая классификация группирует только сенсорные волокна как Тип I, Тип II, Тип III и Тип IV.

Аксон — это один из двух типов цитоплазматических выступов из тела клетки нейрона; другой тип — дендрит . Аксоны отличаются от дендритов несколькими особенностями, включая форму (дендриты часто сужаются, в то время как аксоны обычно имеют постоянный радиус), длину (дендриты ограничены небольшой областью вокруг тела клетки, в то время как аксоны могут быть намного длиннее) и функцию (дендриты получают сигналы, тогда как аксоны передают их). Некоторые типы нейронов не имеют аксона и передают сигналы от своих дендритов. У некоторых видов аксоны могут исходить из дендритов, известных как дендриты, несущие аксоны. Ни у одного нейрона никогда не бывает более одного аксона; однако у беспозвоночных, таких как насекомые или пиявки, аксон иногда состоит из нескольких областей, которые функционируют более или менее независимо друг от друга.

Аксоны покрыты мембраной, известной как аксолемма ; цитоплазма аксона называется аксоплазмой. Большинство аксонов разветвляются, в некоторых случаях очень обильно. Концевые ветви аксона называются телодендриями. Набухший конец телодендрона известен как окончание аксона, которое соединяется с дендроном или телом клетки другого нейрона, образуя синаптическое соединение. Аксоны контактируют с другими клетками — обычно с другими нейронами, но иногда с клетками мышц или желез — в соединениях, называемых синапсами. В некоторых случаях аксон одного нейрона может образовывать синапс с дендритами того же нейрона, что приводит к аутапсу. В синапсе мембрана аксона плотно прилегает к мембране клетки-мишени, а специальные молекулярные структуры служат для передачи электрических или электрохимических сигналов через промежуток. Некоторые синаптические соединения появляются по всей длине аксона по мере его расширения — они называются проходящими («проходящими») синапсами и могут быть сотнями или даже тысячами вдоль одного аксона. Другие синапсы выглядят как терминалы на концах аксональных ветвей.

Один аксон со всеми его ветвями, взятыми вместе, может иннервировать несколько частей мозга и генерировать тысячи синаптических окончаний. Пучок аксонов образует нервный тракт в центральной нервной системе и пучок в периферической нервной системе. У плацентарных млекопитающих самым большим белым веществом трактом в головном мозге является мозолистое тело, образованное примерно из 200 миллионов аксонов в человеческом мозге.

Содержание

  • 1 Анатомия
    • 1.1 Аксональная область
      • 1.1.1 Аксональный бугор
      • 1.1.2 Начальный сегмент
    • 1.2 Аксональный транспорт
    • 1.3 Миелинизация
    • 1.4 Узлы Ранвье
    • 1.5 Терминалы аксонов
  • 2 Потенциалы действия
  • 3 Развитие и рост
    • 3.1 Развитие
      • 3.1.1 Внеклеточная передача сигналов
      • 3.1.2 Внутриклеточная передача сигналов
      • 3.1.3 Динамика цитоскелета
    • 3.2 Рост
    • 3.3 Регулирование длины
  • 4 Классификация
    • 4.1 Двигательная
    • 4.2 Сенсорная
    • 4.3 Вегетативная
  • 5 Клиническая значимость
  • 6 Анамнез
  • 7 Другие животные
  • 8 См. Также
  • 9 Ссылки
  • 10 Внешние ссылки

Анатомия

Типичный миелинизированный аксон Рассеченный мозг человека, показывающий серое вещество и белое вещество

Аксоны являются основными линии передачи нервной системы, и в виде пучков они образуют нервы. Некоторые аксоны могут достигать одного метра и более, а другие — всего лишь один миллиметр. Самые длинные аксоны в человеческом теле — это аксоны седалищного нерва, которые проходят от основания спинного мозга до большого пальца каждой стопы. Диаметр аксонов также варьируется. Большинство отдельных аксонов имеют микроскопический диаметр (обычно около одного микрометра (мкм) в поперечнике). Самые большие аксоны млекопитающих могут достигать в диаметре до 20 мкм. Гигантский аксон кальмара, который специализируется на очень быстрой передаче сигналов, имеет диаметр, близкий к 1 миллиметру, то есть размер небольшого грифеля карандаша. Количество аксональных телодендрий (разветвляющихся структур на конце аксона) также может различаться от одного нервного волокна к другому. Аксоны в центральной нервной системе (ЦНС) обычно показывают множественные телодендрии с множеством синаптических конечных точек. Для сравнения, аксон гранулярных клеток мозжечка характеризуется одним Т-образным узлом ответвления, от которого отходят два параллельных волокна. Продуманное ветвление позволяет одновременно передавать сообщения большому количеству целевых нейронов в одной области мозга.

В нервной системе есть два типа аксонов: миелинизированные и немиелинизированные аксоны. Миелин представляет собой слой жирового изолирующего вещества, которое образовано двумя типами глиальных клеток шванновских клеток и олигодендроцитов. В периферической нервной системе шванновские клетки образуют миелиновую оболочку миелинизированного аксона. В центральной нервной системе олигодендроциты образуют изолирующий миелин. Вдоль миелинизированных нервных волокон через равные промежутки времени возникают промежутки в миелиновой оболочке, известные как узлы Ранвье. Миелинизация обеспечивает особенно быстрый режим распространения электрического импульса, называемый скачкообразной проводимостью.

Миелинизированные аксоны от кортикальных нейронов образуют основную часть нервной ткани, называемую белым веществом в мозг. Миелин придает белый цвет ткани в отличие от серого вещества коры головного мозга, которое содержит тела нейрональных клеток. Подобное расположение наблюдается в мозжечке. Связки миелинизированных аксонов составляют нервные пути в ЦНС. Там, где эти тракты пересекают среднюю линию мозга и соединяют противоположные области, они называются комиссурами. Самым крупным из них является мозолистое тело, которое соединяет два полушария головного мозга, и у него около 20 миллионов аксонов.

Структура нейрона, как видно, состоит из двух отдельных функциональных областей или компартментов — тела клетки вместе с дендритами в качестве одной области и аксональной области в качестве другой.

Аксональная область

Аксональная область или компартмент включает бугорок аксона, начальный сегмент, остальную часть аксона и телодендрии аксона и терминалы аксона. Он также включает миелиновую оболочку. тельца Ниссля, которые продуцируют нейрональные белки, отсутствуют в аксональной области. Белки, необходимые для роста аксона и удаления отходов жизнедеятельности, нуждаются в транспортном каркасе. Этот аксональный транспорт обеспечивается в аксоплазме за счет расположения микротрубочек и промежуточных филаментов, известных как нейрофиламентов.

Аксональный холмик

Деталь, показывающая микротрубочки на бугорке аксона и начальном сегменте.

бугорок аксона — это область, образованная из тела клетки нейрона, которая расширяется, чтобы стать аксоном. Он предшествует начальному сегменту. Полученные потенциалы действия, которые суммируются в нейроне, передаются на бугорок аксона для генерации потенциала действия из начального сегмента.

Начальный сегмент

начальный сегмент аксона (AIS) представляет собой структурно и функционально отдельный микродомен аксона. Одна из функций начального сегмента — отделить основную часть аксона от остальной части нейрона; другая функция — помочь инициировать. Обе эти функции поддерживают нейрон клеточную полярность, в которой дендриты (и в некоторых случаях сома ) нейрона получают входные сигналы в базальной области, а в апикальной области — аксон нейрона обеспечивает выходные сигналы.

Начальный сегмент аксона немиелинизирован и содержит специализированный комплекс белков. Его длина составляет примерно от 20 до 60 мкм, и он функционирует как место инициации потенциала действия. Как положение на аксоне, так и длина AIS могут меняться, показывая степень пластичности, которая может точно настраивать нейрональный выход. Более длинный AIS связан с большей возбудимостью. Пластичность также проявляется в способности AIS изменять свое распределение и поддерживать активность нейронных схем на постоянном уровне.

AIS очень специализирован для быстрого проведения нервных импульсов. Это достигается за счет высокой концентрации потенциал-управляемых натриевых каналов в начальном сегменте, где возникает потенциал действия. Ионные каналы сопровождаются большим количеством молекул клеточной адгезии и каркасных белков, которые прикрепляют их к цитоскелету. Взаимодействие с анкирином G важно, поскольку он является основным организатором в AIS.

Аксональный транспорт

аксоплазма эквивалентна цитоплазма в ячейке. Микротрубочки образуются в аксоплазме на бугорке аксона. Они расположены по длине аксона в перекрывающихся участках и все направлены в одном направлении — к окончанию аксона. Об этом говорят положительные окончания микротрубочек. Такое перекрывающееся расположение обеспечивает маршруты транспортировки различных материалов из тела клетки. Исследования аксоплазмы показали движение многочисленных пузырьков всех размеров, которые можно увидеть вдоль цитоскелетных филаментов — микротрубочек и нейрофиламентов, в обоих направлениях между аксоном и его окончаниями и телом клетки.

Исходящий антероградный транспорт из тела клетки по аксону переносит митохондрии и мембранные белки, необходимые для роста, к концу аксона. Входящий ретроградный транспорт переносит отходы клетки от терминала аксона к телу клетки. Исходящие и входящие треки используют разные наборы моторных белков. Исходящий транспорт обеспечивается kinesin, а входящий обратный трафик обеспечивается dynein. Динеин направлен на минус-конец. Существует множество форм моторных белков кинезина и динеина, и считается, что каждая из них несет свой груз. Исследования транспорта в аксоне привели к названию кинезина.

Миелинизация

TEM миелинизированного аксона в поперечном сечении. Поперечное сечение аксона: (1) Аксон (2) Ядро (3) Шванновская клетка (4) Миелиновая оболочка (5) Неврилемма

В нервной системе аксоны могут быть миелинизированы, или немиелинизированные. Это обеспечение изолирующего слоя, называемого миелиновой оболочкой. Миелиновая мембрана уникальна своим относительно высоким отношением липидов к белку.

В аксоны периферической нервной системы миелинизируются глиальные клетки, известные как клетки Шванна. В центральной нервной системе миелиновая оболочка представлена ​​другим типом глиальных клеток, олигодендроцитом. Клетки Шванна миелинизируют единственный аксон. Олигодендроцит может миелинизировать до 50 аксонов.

Состав миелина этих двух типов различается. В ЦНС основным белком миелина является протеолипидный белок, а в ПНС — основной белок миелина.

Узлы Ранвье

Узлы Ранвье (также известные как миелиновая оболочка промежутки) представляют собой короткие немиелинизированные сегменты миелинизированного аксона, которые периодически встречаются между сегментами миелиновой оболочки. Следовательно, в точке узла Ранвье аксон уменьшается в диаметре. Эти узлы являются областями, где могут быть созданы потенциалы действия. В скачкообразной проводимости электрические токи, возникающие в каждом узле Ранвье, передаются с небольшим затуханием к следующему узлу в линии, где они остаются достаточно сильными, чтобы генерировать другой потенциал действия. Таким образом, в миелинизированном аксоне потенциалы действия эффективно «прыгают» от узла к узлу, минуя миелинизированные участки между ними, в результате чего скорость распространения намного выше, чем может выдержать даже самый быстрый немиелинизированный аксон.

Терминалы аксона

Аксон может делиться на множество ветвей, называемых телодендриями (греч. Конец дерева). В конце каждого телодендрона находится окончание аксона (также называемое синаптическим бутоном или терминальным бутоном). Терминалы аксонов содержат синаптические пузырьки, в которых хранится нейромедиатор для высвобождения в синапсе. Это делает возможными множественные синаптические связи с другими нейронами. Иногда аксон нейрона может синапсировать с дендритами того же нейрона, когда это известно как аутапс.

Потенциалы действия

Структура типичного химического синапса
Иллюстрированный химический синапс Постсинаптическая. плотность Напряжение -. закрытый Ca. канал Синаптический. везикула Нейротрансмиттер. транспортер Рецептор Нейротрансмиттер Аксонный терминал Синаптическая щель Дендрит

Большинство аксонов несут сигналы в виде потенциалов действия, которые представляют собой дискретные электрохимические импульсы, которые быстро проходят по аксону, начиная с тела клетки и заканчиваясь в точках, где аксон производит синаптический контакт с клетками-мишенями. Определяющей характеристикой потенциала действия является то, что он действует по принципу «все или ничего» — каждый потенциал действия, который генерирует аксон, по существу имеет одинаковый размер и форму. Эта характеристика «все или ничего» позволяет передавать потенциалы действия от одного конца длинного аксона к другому без какого-либо уменьшения размера. Однако есть некоторые типы нейронов с короткими аксонами, которые несут ступенчатые электрохимические сигналы переменной амплитуды.

Когда потенциал действия достигает пресинаптического терминала, он активирует процесс синаптической передачи. Первый шаг — это быстрое открытие каналов для ионов кальция в мембране аксона, позволяя ионам кальция проходить внутрь через мембрану. Результирующее увеличение внутриклеточной концентрации кальция приводит к тому, что синаптические везикулы (крошечные контейнеры, окруженные липидной мембраной), заполненные химическим веществом нейромедиатор, сливаются с мембраной аксона и выводят их содержимое во внеклеточное пространство.. Нейромедиатор высвобождается из пресинаптического нерва посредством экзоцитоза. Затем химический нейротрансмиттер диффундирует к рецепторам, расположенным на мембране клетки-мишени. Нейромедиатор связывается с этими рецепторами и активирует их. В зависимости от типа активируемых рецепторов действие на клетку-мишень может заключаться в возбуждении клетки-мишени, ее подавлении или изменении ее метаболизма каким-либо образом. Вся эта последовательность событий часто происходит менее чем за тысячную долю секунды. После этого внутри пресинаптического терминала новый набор везикул перемещается в положение рядом с мембраной, готовых к высвобождению при достижении следующего потенциала действия. Потенциал действия — это последний электрический шаг в интеграции синаптических сообщений в масштабе нейрона.

(A) пирамидная клетка, интернейрон и форма волны короткой продолжительности (Axon), наложение трех средних форм волны;. ( B) Средняя и стандартная ошибка времени прохождения пика для интернейронов пирамидных клеток и предполагаемых аксонов;. (C) График разброса отношения сигнал / шум для отдельных единиц в зависимости от времени прохождения пика для аксонов, пирамидных клеток (PYR) и интернейронов (INT).

Внеклеточные записи распространения потенциала действия в аксонах были продемонстрированы у свободно движущихся животных. В то время как внеклеточные соматические потенциалы действия использовались для изучения клеточной активности у свободно движущихся животных, таких как клетки места, аксональная активность как в белом, так и в сером веществе также может быть записано. Внеклеточные записи распространения потенциала действия аксонов отличаются от соматических потенциалов действия по трем причинам: 1. Сигнал имеет более короткую длительность спада пика (~ 150 мкс), чем у пирамидных клеток (~ 500 мкс) или интернейронов (~ 250 мкс). 2. Изменение напряжения трехфазное. 3. Активность, записанная на тетроде, видна только на одном из четырех проводов записи. В записях от свободно движущихся крыс аксональные сигналы были изолированы в трактах белого вещества, включая альвеус и мозолистое тело, а также серое вещество гиппокампа.

Фактически, генерация потенциалов действия в vivo является последовательным по своей природе, и эти последовательные всплески составляют цифровые коды в нейронах. Хотя предыдущие исследования указывают на аксональное происхождение одного спайка, вызванного кратковременными импульсами, физиологические сигналы in vivo запускают инициирование последовательных спайков в телах клеток нейронов.

Помимо распространения потенциалов действия на аксоны. терминалов, аксон способен усиливать потенциалы действия, что обеспечивает безопасное распространение последовательных потенциалов действия к окончанию аксона. Что касается молекулярных механизмов, потенциал-управляемые натриевые каналы в аксонах обладают более низким порогом и более коротким рефрактерным периодом в ответ на кратковременные импульсы.

Развитие и рост

Развитие

Развитие аксона до его мишени — одна из шести основных стадий в общем развитии нервной системы. Исследования, проведенные на культивируемых нейронах гиппокампа, предполагают, что нейроны изначально продуцируют несколько нейритов, которые эквивалентны, но только одному из этих нейритов суждено стать аксоном. Неясно, предшествует ли спецификация аксона удлинению аксона или наоборот, хотя недавние данные указывают на последнее. Если разрезать не полностью развитый аксон, полярность может измениться, и другие нейриты потенциально могут стать аксоном. Это изменение полярности происходит только в том случае, если аксон сокращен как минимум на 10 мкм короче, чем другие нейриты. Послетого, как разрез будет сделан, самый длинный нейрит станет будущим аксоном, все остальные нейриты, включая исходный аксон, превратятся в дендриты. Наложение внешней силы на нейрит, заставляющее его удлиняться, превращает его в аксон. Тем не менее, развитие аксонов достигается за счет сложного взаимодействия между внеклеточной передачей сигналов, внутриклеточной передачей сигналов и цитоскелетной динамикой.

Внеклеточная передача сигналов

Внеклеточные сигналы, которые распространяются через внеклеточный матрикс, окружающие нейроны, играют важную роль в развитии аксонов. Эти сигнальные молекулы включают белки, нейротрофические факторы, внеклеточный матрикс и молекулы адгезии. Нетрин (также известный как UNC-6), секретируемый белок, участвует в образовании аксонов. Когда рецептор нетрина UNC-5 мутируется, несколько нейритов нерегулярно проецируются из нейронов, и, наконец, один аксон вытягивается вперед. Нейротрофические факторы — фактор роста нервов (NGF), нейротрофический фактор мозга (BDNF) и нейротрофин-3 (NTF3) также участвуют в развитии аксонов. и связываются с рецепторами Трк.

. ганглиозид -превращающий фермент ганглиозид плазматической мембраны алидаза (PMGS), который участвует в активации TrkA на кончике нейтритов, требуется для удлинения аксонов. PMGS асимметрично распределяется по кончику нейрита, которому суждено стать будущим аксоном.

Внутриклеточная передача сигналов

Во время развития аксонов активности PI3K увеличивается в кончик предназначенного аксона. Нарушение активности PI3K тормозит развитие аксонов. Активация PI3K приводит к производству фосфатидилинозитол (3,4,5) -трисфосфата (PtdIns), который может вызвать значительное удлинение нейрита, превращая его в аксон. Таким образом, сверхэкспрессия фосфатаз, вызывающих нарушение поляризации, приводит к нарушению поляризации.

Цитоскелетная динамика

Нейрит с самым низким актиновым филаментом контент станет аксоном. Концентрация PGMS и содержание f-актина обратно коррелированы; когда PGMS становится обогащенным на кончике нейрита, содержание в нем f-актина снижается. Кроме того, воздействие лекарств, деполимеризующих актин, и токсина B (который инактивирует сигналы передачи Rho ) вызывает образование множественных аксонов. Следовательно, разрыв актиновой сети в конусе роста будет производить ее нейрита в аксон.

Рост

Аксонятидневной мыши с видимым конусом роста

Растущие аксоны проходят через их окружение через конус роста , который находится на кончике аксона. Конус роста имеет широкое пластинчатое расширение, называемое ламеллиподиумом, содержит выступы, называемые филоподиями. Филоподии — это механизм, с помощью которого весь процесс прикрепляется к поверхностям и исследует нашу среду. Актин играет важную роль в подвижности этой системы. Среда с высоким уровнем молекулы клеточной адгезии (CAM) идеальная среда для роста аксонов. Похоже, это обеспечивает «липкую» поверхность для роста аксонов. Примеры CAM, специфичных для нейронных систем, включают N-CAM, TAG-1 — аксональный гликопротеин — и MAG, все из которых являются частью суперсемейства иммуноглобулинов. Другой набор молекул, называемый внеклеточный матрикс — молекулы адгезии, также обеспечивает липкий субстрат для роста аксонов. Примеры этих молекул включают ламинин, фибронектин, тенасцин и перлекан. Некоторые из них поверхностно связаны с клетками и, таким образом, как аттрактанты или репелленты ближнего действия. Другие являются диффундирующими лигандами и, следовательно, могут иметь длительного длительного действия.

Клетки, называемые направляющими клетками, дают в первую ростом аксонов нейронов. Эти клетки, которые обеспечивают наведению аксонов, обычно представляют собой другие нейроны, иногда являющиеся незрелыми. Когда аксон завершит свой рост в месте его соединения с мишенью, диаметр аксона может увеличиться до раз, в зависимости от требуемой скорости проводимости.

Он также имеет исследованиям было обнаружено, что если аксоны нейрона были повреждены, пока сома (тело клетки нейрона ) не повреждена, аксоны будут регенерировать и воссоздавать синаптические связи с нейронами с помощью ячеек указателя. Это также называется нейрорегенерацией.

Nogo-A — это тип компонента, ингибирующего отрастание нейритов, который присутствует в миелиновых мембранах центральной нервной системы (обнаружен в аксоне). Он играет решающую роль в ограничении регенерации аксонов центральной нервной системы взрослых млекопитающих. В недавних исследованиях, если Nogo-A заблокирован и нейтрализован, можно вызвать регенерацию аксонов на большом расстоянии, что приводит к усилению функционального восстановления у крыс и спинного мозга мыши. Этого еще предстоит сделать на людях. Недавнее исследование также показало, что макрофаги, активируемые специфическим воспалительным процессом, активируемым рецептором дектина-1, способным восстановлением аксонов, однако также вызывают нейротоксичность в нейроне.

Регулировка длины

Аксоны в степени различаются по длине от нескольких микрометров до метров у некоторых животных. Это подчеркивает, что аксонует механизм регулирования длины клетки, позволяющий нейронам ощущать длину своихонов и соответственно должен контролировать их рост. Было обнаружено, что играет важную роль в регулировании длины аксонов. Основываясь на этом наблюдении, исследователи разработали модель роста аксонов, описывающую, как моторные белки, увеличивающие длину аксона на молекулярном уровне. Эти исследования предполагают, что моторные белки переносят сигнальные молекулы от сомы к конусу роста и наоборот, колеблется во времени с параметрами, зависящей от длины.

Классификация

Аксоны нейронов задней части периферической системы можно классифицировать на основе их физических характеристик и свойств проводимости сигнала. Известно, что эти аксоны имеют разную толщину (от 0,1 до 20 мкм), считалось, что эти аксоны связаны со скоростью, определяющей потенциал действия может перемещаться по аксону — скорость его проводимости. Эрлангер и Гассер подтвердили эти гипотезу и идентифицировали несколько типов волокон, установив связь между аксона и его скоростью проводимости нерва. Они опубликовали свои открытия в 1941 году, дав первую класси установкуонов.

Аксоны подразделяются на две системы. Первый, введенный Эрлангером и Гассером, сгруппировал волокна три основных, используя буквы A, B и C. Эти группы: группа A, группа B и группа C включает как сенсорные волокна (афференты ), так и моторные волокна (эфференты ). Первая группа A была разделена на альфа, бета, гамма и дельта волокна — Aα, Aβ, Aγ и Aδ. Моторными нейронами различных моторных волокон были нижние мотонейроны — альфа-мотонейрон, бета-мотонейрон и гамма-мотонейрон <55.>Имеющий нервные волокна Aα, Aβ и Aγ соответственно.

Позже другие исследователи обнаружили две группы волокон Aa, которые были сенсорными волокнами. Затем они были введены в систему, включающую только сенсорные волокна (хотя некоторые из них были смешанными нервами, а также двигательными волокнами). Эта система называет сенсорные группы Типами и использует римские цифры: Тип Ia, Тип Ib, Тип II, Тип III и Тип IV.

Мотор

Нижние мотонейроны имеют два типа волокон:

Типы моторных волокон

Тип Эрлангер-Гассер. Классификация Диаметр. (мкм) Миелин Проводимость. скорость (м / с) Связанные мышечные волокна
α 13-20 Да 80–120 Экстрафузальные мышечные волокна
β
γ 5-8 Да 4–24 Внутрифузальные мышечные волокна

Сенсорные

Различные сенсорные рецепторы иннервируют разные типы нервных волокон. Проприоцепторы иннервируются сенсорными волокнами типа Ia, Ib и II, механорецепторами сенсорными волокнами типа II и III и ноцицепторами и терморецепторами сенсорными волокнами III и IV типа.

Типы сенсорных волокон

Тип Эрлангер-Газсер. Классификация Диаметр. (мкм) Миелин Проводимость. скорость (м / с) Ассоциированные сенсорные рецепторы Проприорецепторы Механоцепторы Ноцицепторы и. терморецепторы
Ia 13-20 Да 80–120 Первичные рецепторы мышечного веретена (кольцевидное окончание)
Иб 13-20 Да 80–120 Сухожильный орган Гольджи
II 6-12 Да 33–75 Вторичные рецепторы мышечное веретено (окончание цветочно-спрей).. Все кожные механорецепторы
III 1-5 Тонкий 3–30 Свободные нервные окончания прикосновения и давление. Ноцицепторы бокового спиноталамического тракта. Холодные терморецепторы
IV C 0,2- 1,5 No 0,5-2,0 Ноцицепторы переднего спинного мозга. Тепловые рецепторы

вегетативные

вегетативная нервная система имеет два вида периферического волокна s:

Типы волокна

Тип Erlanger-Gasser. Классификация Диаметр. (мкм) Myelin Проводимость. скорость (м / с)
преганглионарные волокна B 1–5 Да 3–15
постганглионарные волокна C 0,2–1,5 No 0,5–2, 0

Клиническая значимость

По степени тяжести повреждение нерва может быть описана как нейропраксия, аксонотмезис или невротмезис. Сотрясение мозга считается легкой формой диффузного повреждения аксонов. Поражение аксонов также может вызывать центральный хроматолиз. Дисфункция аксонов в нервной системе является одной из причин многих наследственных неврологических расстройств, которые поражают периферические, так и центральные нейроны.

Когда аксон разрушается, активный процесс дегенерация аксона происходит в части аксона, наиболее удаленной от тела клетки. Эта дегенерация происходит быстро после травмы, когда часть аксона блокируется мембранами и разрушается макрофагами. Это известно как валлеровское вырождение. Отмирание аксона также может иметь место при многих нейродегенеративных заболеваниях, особенно при нарушении транспорта аксонов, известно как дегенерация, подобная валлеровской. Исследования показывают, что аксональный белок NMNAT2 не может достичь всего аксона.

Демиелинизация аксонов вызывает множество неврологических симптомов, обнаруженных при заболевании рассеянный склероз.

Дисмиелинизация — это аномальное образование миелиновой оболочки. Это связано с использованием лейкодистрофиями, а также с шизофренией.

Тяжелая черепно-мозговая травма может привести к обширным пораженным нервным путям, повреждая аксоны в состоянии, известном как диффузное повреждение аксонов. Это может привести к устойчивому вегетативному состоянию. В исследованиих на крысе было показано, что повреждение аксонов в результате повреждения однократной черепно-мозговой травмы может привести к дальнейшему повреждению после повторных легких черепно-мозговых травм.

A канал для направления нервов является искусственным средством управления ростом аксонов для обеспечения нейрорегенерации и одним из многих методов лечения, используется для травм нерва.

История

Немецкий анатом Отто Фридриху Карлу Дейтерсу обычно приписывают открытие аксона, отличив его от дендритов. Швейцарский Рюдольф Альберт фон Келликер и немец Роберт Ремак были первыми, кто идентифицировал и охарактеризовал начальный сегмент аксона. Кёлликер назвал аксон в 1896 году. Луи-Антуан Ранвье был первым, кто описал промежутки или узлы, обнаруженные на аксонах, и за этот вклад эти аксональные особенности теперь обычно называют узлами Ранвье. Сантьяго Рамон-и-Кахал, испанский анатом, предположил, что аксоны были выходными компонентами нейронов, описывая их функции. Джозеф Эрлангер и Герберт Гассер ранее разработали классификацию система для периферических нервных волокон, основанная на скорости аксональной проводимости, миелинизации, размере волокон и т. д. Алан Ходжкин и Эндрю Хаксли также использовали гигантский аксон кальмара (1939), а к 1952 году они получили полное количественное описание ионной основы потенциала действия, что привело к формулировке модели Ходжкина-Хаксли. Ходжкин и Хаксли были совместно удостоены Нобелевской премии за эту работу в 1963 году. Формулы, описывающие аксональную проводимость, были распространены на позвоночных в уравнениях Франкенхейзера-Хаксли. Понимание биохимической основы распространения потенциала действия продвинулось дальше и включает множество деталей об отдельных ионных каналах.

других животных

Аксоны у беспозвоночных были тщательно изучены. прибрежный кальмар, часто используемый в качестве модельного организма, имеет самый длинный из известных аксонов. гигантский кальмар имеет самый большой известный аксон. Его размер составляет от половины (обычно) до одного миллиметра в диаметре, и он используется для управления его системой реактивного движения. Самая быстрая зарегистрированная скорость проводимости 210 м / с обнаружена в заключенных в оболочку аксонах некоторых пелагических креветок Penaeid, а обычный диапазон составляет от 90 до 200 м / с (cf 100– 120 м / с для самого быстрого аксона миелинизированных позвоночных.)

В других случаях, как видно из исследований на крысах, аксон происходит из дендрита; такие аксоны, как говорят, имеют «дендритное происхождение». Некоторые аксоны с дендритным происхождением аналогичным образом имеют «проксимальный» начальный сегмент, который начинается непосредственно в источнике аксона, в то время как другие имеют «дистальный» начальный сегмент, заметно отделенный от источника аксона. У многих видов некоторые из нейронов имеют аксоны, которые исходят из дендрита, а не из тела клетки, и они известны как дендриты, несущие аксоны. Во многих случаях аксон берет свое начало от бугорка аксона на соме; такие аксоны, как говорят, имеют «соматическое происхождение». Некоторые аксоны соматического происхождения имеют «проксимальный» начальный сегмент, прилегающий к бугорку аксона, в то время как другие имеют «дистальный» начальный сегмент, отделенный от сомы расширенным бугорком аксона.

См. Также

  • Электрофизиология
  • Ганглиозное возвышение
  • Гигантская аксональная нейропатия
  • Нейронное отслеживание
  • Пионерный аксон

Ссылки

Внешние ссылки

  • Изображение гистологии: 3_09 в Центре медицинских наук Университета Оклахомы — «Слайд 3 Спинной мозг »

Аксоны и дендритыВажнейший элемент в нервной системе – нейронная клетка, или простой нейрон. Это специфическая единица нервной ткани, задействованная в передаче и первичной обработке информации, а так же, являющаяся главным структурным образованием в ЦНС. Как правило, клетки имеют универсальные принципы строения и включают в себя помимо тела, еще аксоны нейронов и дендриты.

Общая информация

Нейроны центральной нервной системы являются важнейшими элементами в данном виде ткани, они способны перерабатывать, передавать, а так же создавать информацию в форме обычных электрических импульсов. В зависимости от функции нервные клетки бывают:

  1. Рецепторные, чувствительные. Их тело находится в чувствительных узлах нервов. Воспринимают сигналы, преобразуют их в импульсы и передают в ЦНС.
  2. Промежуточные, ассоциативные. Расположены в пределах ЦНС. Обрабатывают информацию и участвуют в выработке команд.
  3. Двигательные. Тела находятся в ЦНС и вегетативных узлах. Посылают импульсы к рабочим органам.

Обычно, имеют три характерных структуры в своем строении: тело, аксон, дендриты. Каждая из этих частей, выполняет специфическую роль, о которой будет сказано далее. Дендриты и аксоны – это важнейшие элементы, участвующие в процессе сбора, передачи информации.

Аксоны нейрона

Аксоны – это самые длинные отростки, длина которых может достигать нескольких метров. Их основная функция – это передача информации от тела нейрона к другим клеткам центральной нервной системы или мышечным волокнам, если речь идет о двигательных нейронах. Как правило, аксоны покрыты специальным белком, под названием миелин. Данный белок является изолятором и способствует повышению скорости передачи информации по нервному волокну. Каждый аксон имеет характерное распределение миелина, что играет важную роль в регулировании скорости передачи закодированной информации. Аксоны нейронов, чаще всего, единичные, что связано с общими принципами функционирования центральной нервной системе.

Это интересно! Толщина аксонов у кальмаров достигает 3 мм. Зачастую отростки отвечают у многих беспозвоночных за поведение во время опасности. Увеличение диаметра влияет на скорость реакции.

Каждый аксон заканчивается так называемыми терминальными ветвями – специфическими образованиями, непосредственно передающими сигнал от тела к другим образованиям (нейроны или мышечные волокна). Как правило, терминальные ветви образуют синапсы – особые структуры в нервной ткани, обеспечивающие процесс передачи информации с помощью различных химических веществ, или нейромедиаторов.

Химическое вещество является своего рода посредником, которое участвует в усилении и модуляции передачи импульсов. Терминальные ветви – небольшие разветвления аксона перед местом его прикрепления к другой нервной ткани. Подобное структурная особенность позволяет улучшить передачу сигнала и способствует более эффективной работе всей центральной нервной системы вместе взятой.

Строение головнго мозгаА вы знаете, что человеческий головной мозг состоит из 25 млрд. нейронов? Узнайте о строении головного мозга.

Узнайте о функциях коры головного мозга здесь.

Дендриты нейрона

Дендриты нейрона – это множественные нервные волокна, выполняющие роль коллектора информации и передающие ее непосредственно к телу нервной клетки. Чаще всего, клетка имеет густо разветвленную сеть дендритных отростков, что позволяет значительно улучшить сбор информации из окружающей среды.

Дендриты нейрона Полученная информация превращается в электрический импульс и распространяясь по дендриту попадает на тело нейрона, где подвергается первичной обработке и может передаваться дальше по аксону. Как правило, дендриты начинаются синапсами – специальными образованиями, специализирующимися на передаче информации с помощью нейромедиаторов.

Важно! Разветвленность дендритного дерева влияет на количество получаемых нейроном входных импульсов, что позволяет обрабатывать большое количество информации.

Дендритные отростки очень сильно разветвлены, образуют целую информационную сеть, позволяющую клетке получать большое количество данных от окружающих ее клеток и других тканевых образований.

Интересно! Расцвет исследований дендритов приходится на 2000 год, который знаменуется стремительным прогрессом в области молекулярной биологии.

Тело

Тело, или сома нейрона – это центральной образование, являющееся местом сбора, обработки и дальнейшей передачи любой информации. Как правило, тело клетки играет важнейшую роль в хранении каких-либо данных, а так же их реализации посредством генерации нового электрического импульса (происходит на аксонном холмике).

Тело является местом хранения ядра нервной клетки, которое поддерживает метаболизм и структурную целостность. Помимо этого, в соме находится и другие клеточные органеллы: митохондрии – обеспечивающие весь нейрон энергией, эндоплазматический ретикулум и аппарат Гольджи, являющиеся фабриками по производству различных белковых и других молекул.

Способности мозгаНашу действительность создает головной мозг. Все необычные факты о нашем организме.

Материальной структурой нашего сознания является головной мозг. Читайте подробнее здесь.

Сверхвозможности мозга по адресу https://golmozg.ru/interesno/sposobnosti-mozga-cheloveka-interesnye-fakty-i-sverxvozmozhnosti.html. Все о работе мозга.

Как было сказано выше, тело нервной клетки содержит аксонный холмик. Это особая часть сомы, способная генерировать электрический импульс, который передается аксону, а по нему дальше к своей мишени: если к мышечной ткани, то она получает сигнал о сокращении, если к другому нейрону, то это приводит к передаче какой-либо информации. Читайте также…

Нейрон важнейшая структурно-функциональная единица в работе ЦНС, выполняющий все ее главные функции: создание, хранение, обработка и дальнейшая передача закодированной в нервные импульсы информации. Нейроны значительно различаются размерами и формами сомы, количеством и характером ветвления аксонов и дендритов, а так же особенностями распределение миелина на своих отростках.

1 звезда2 звезды3 звезды4 звезды5 звезд (2 оценок, среднее: 5,00 из 5)

Загрузка…

.

Введение в нейробиологию

7. Нейроны

Основными структурными особенностями нейронов являются перикария, дендриты и аксоны Нейроны содержат те же самые внутриклеточные компоненты, что и другие клетки Молекулярные маркеры могут использоваться для идентификации нейронов

Нейро́н, или невро́н (от др.-греч. νεῦρον — волокно, нерв) — структурно-функциональная единица нервной системы. Нейрон — электрически возбудимая клетка, которая обрабатывает, хранит и передает информацию с помощью электрических и химических сигналов. Нейрон имеет сложное строение и узкую специализацию. Клетка содержит ядро, тело клетки и отростки (дендриты и аксоны). В головном мозге человека насчитывается около 85—86 миллиардов нейронов[1][2]. Нейроны могут соединяться один с другим, формируя биологические нейронные сети. Нейроны разделяют на рецепторные, эффекторные и вставочные.

Сложность и многообразие функций нервной системы определяются взаимодействием между нейронами. Это взаимодействие представляет собой набор различных сигналов, передаваемых между нейронами или мышцами и железами. Сигналы испускаются и распространяются с помощью ионов. Ионы генерируют электрический заряд (потенциал действия), который движется по телу нейрона.

Важное значение для науки имело изобретение метода Гольджи в 1873 году, позволявшего окрашивать отдельные нейроны[3][4]. Термин «нейрон» (нем. Neuron) для обозначения нервных клеток введён Г. В. Вальдейером в 1891 году[5][6].

Строение нейронов

Нейрон состоит из тела диаметром от 3 до 130 мкм. Тело содержит ядро (с большим количеством ядерных пор) и органеллы (в том числе сильно развитый шероховатый ЭПР с активными рибосомамиаппарат Гольджи), а также из отростков. Выделяют два вида отростков: дендриты и аксон. Нейрон имеет развитый цитоскелет, который проникает в его отростки. Цитоскелет поддерживает форму клетки, его нити служат «рельсами» для транспорта органелл и упакованных в мембранные пузырьки веществ (например, нейромедиаторов). Цитоскелет нейрона состоит из фибрилл разного диаметра: Микротрубочки (Д = 20—30 нм) — состоят из белка тубулина и тянутся от нейрона по аксону, вплоть до нервных окончаний. Нейрофиламенты (Д = 10 нм) — вместе с микротрубочками обеспечивают внутриклеточный транспорт веществ. Микрофиламенты (Д = 5 нм) — состоят из белков актина и миозина, особенно выражены в растущих нервных отростках и в нейроглии.(Нейроглия, или просто глия (от др.-греч. νεῦρον — волокно, нерв + γλία — клей), — совокупность вспомогательных клеток нервной ткани. Составляет около 40 % объёма ЦНС. Количество глиальных клеток в среднем в 10—50 раз больше, чем нейронов).

В теле нейрона выявляется развитый синтетический аппарат, гранулярная ЭПС нейрона окрашивается базофильно и известна под названием «тигроид». Тигроид проникает в начальные отделы дендритов, но располагается на заметном расстоянии от начала аксона, что служит гистологическим признаком аксона. Нейроны различаются по форме, числу отростков и функциям. В зависимости от функции выделяют чувствительные, эффекторные (двигательные, секреторные) и вставочные. Чувствительные нейроны воспринимают раздражения, преобразуют их в нервные импульсы и передают в мозг. Эффекторные (от лат. effectus — действие) — вырабатывают и посылают команды к рабочим органам. Вставочные — осуществляют связь между чувствительными и двигательными нейронами, участвуют в обработке информации и выработке команд.

Различается антероградный (от тела) и ретроградный (к телу) аксонный транспорт.

Аксоны и дендриты

Аксон — длинный отросток нейрона. Приспособлен для проведения возбуждения и информации от тела нейрона к нейрону или от нейрона к исполнительному органу. Дендриты — короткие и сильно разветвлённые отростки нейрона, служащие главным местом образования влияющих на нейрон возбуждающих и тормозных синапсов (разные нейроны имеют различное соотношение длины аксона и дендритов), и которые передают возбуждение к телу нейрона. Нейрон может иметь несколько дендритов и обычно только один аксон. Один нейрон может иметь связи со многими (до 20 тысяч) другими нейронами.

Дендриты делятся дихотомически, аксоны же дают коллатерали. В узлах ветвления обычно сосредоточены митохондрии.

Дендриты не имеют миелиновой оболочки, аксоны же могут её иметь. Местом генерации возбуждения у большинства нейронов является аксонный холмик — образование в месте отхождения аксона от тела. У всех нейронов эта зона называется триггерной.

Си́напс (греч. σύναψις, от συνάπτειν — обнимать, обхватывать, пожимать руку) — место контакта между двумя нейронами или между нейроном и получающей сигнал эффекторнойклеткой. Служит для передачи нервного импульса между двумя клетками, причём в ходе синаптической передачи амплитуда и частота сигнала могут регулироваться. Одни синапсы вызывают деполяризацию нейрона и являются возбуждающими, другие — гиперполяризацию и являются тормозными. Обычно для возбуждения нейрона необходимо раздражение от нескольких возбуждающих синапсов.

Термин был введён английским физиологом Чарльзом Шеррингтоном в 1897 г.

Нервная ткань — основная ткань, формирующая нервную систему и создающая условия для реализации ее многочисленных функций. Нервная ткань имеет эктодермальное происхождение, не принято делить нервную ткань на какие-либо виды тканей. Обладает двумя основными свойствами: возбудимостью и проводимостью.

Нейрон

Структурно-функциональной единицей нервной ткани является нейрон (от др.-греч. νεῦρον — волокно, нерв) — клетка с одним
длинным отростком — аксоном (греч. axis — ось), и одним/несколькими короткими — дендритами (греч. dendros — дерево).

Строение нейрона

Спешу сообщить, что представление, будто короткий отросток нейрона — всегда дендрит, а длинный — всегда аксон, в корне неверно. С точки
зрения физиологии правильнее дать следующие определения: дендрит — отросток нейрона, по которому нервный импульс перемещается к телу нейрона, аксон — отросток нейрона, по которому импульс перемещается от тела нейрона.

Нейроны обладают 4 свойствами:

  • Рецепция (лат. receptio — принятие) — способны воспринимать поступающие сигналы (дендриты)
  • В ответ на сигналы способны переходить в состояние возбуждения или торможения
  • Проведение возбуждения (от дендрита к телу нейрона, затем — к концу аксона)
  • Передача сигнала другим объектам — нейрону или эффекторному органу

В физиологии эффекторным (от лат. efferes — выносящий) органом часто называют исполнительный орган или орган-мишень воздействия (мышцы, железы). Орган-эффектор выполняет те или иные «приказы» ЦНС (центральной нервной системы) или эндокринных желёз

Отростки нейронов проводят нервные импульсы и передают их другим нейронам, эффекторам, благодаря чему
мышцы сокращаются или расслабляются, а секреция желез усиливается или уменьшается.

Тройничный нерв

Миелиновая оболочка

Нервные волокна подразделяются на миелиновые и безмиелиновые. Нервное волокно — это один или несколько отростков нейронов (могут быть как аксоны, так и дендриты) с окружающей оболочкой.

Безмиелиновые нервные волокна находятся преимущественно в составе вегетативной нервной системы (скорость проведения 1-2 м/c). Миелиновые — образуют белое вещество головного и спинного мозга, нервные волокна соматической нервной системы (5-120 м/с).

В миелиновых нервных волокнах отростки нейронов покрыты миелиновой оболочкой (на 70-75% состоит из липидов (жиров)), которая обеспечивает изолированное проведение нервного
импульса по нерву. Если бы не было миелиновой оболочки (вообразите!) нервные импульсы распространялись бы хаотично, и,
когда мы хотели сделать движение рукой, то вместе с рукой двигалась бы нога.

Существует болезнь при которой собственные антитела уничтожают миелиновую оболочку нервных волокон головного и спинного мозга (случаются и такие сбои в работе организма). Эта
болезнь — рассеянный склероз, по мере прогрессирования приводит к разрушению не только миелиновой оболочки, но и нервов — а значит,
происходит атрофия мышц и человек постепенно становится обездвиженным.

Рассеянный склероз, разрушенная миелиновая оболочка

Миелиновый слой представлен несколькими слоями мембраны глиальной клетки (леммоцит, шванновская клетка), которые закручиваются вокруг осевого цилиндра (отростка нейрона). Это закручивание хорошо видно на картинке, где изображен здоровый нерв, чуть выше ;)

Миелиновый слой оболочки волокна регулярно прерывается в местах стыка соседних леммоцитов — перехваты Ранвье. Миелиновая оболочка обеспечивает изолированное и более быстрое проведение возбуждения (сальтаторный тип, лат. salto — скачу, прыгаю).

Перехваты Ранвье

Нейроглия (греч. νεῦρον — волокно, нерв + γλία — клей)

Вы уже убедились, насколько значимы нейроны, их высокая специализация приводит к возникновению особого окружения — нейроглии.
Нейроглия (глиальные клетки, глиоциты) — вспомогательная часть нервной системы, которая выполняет ряд важных функций:

  • Опорная — поддерживает нейроны в определенном положении
  • Регенераторная (лат. regeneratio — возрождение) — в случае повреждения нервных структур нейроглия способствует регенерации
  • Трофическая (греч. trophe — питание) — с помощью нейроглии осуществляется питание нейронов: напрямую с кровью нейроны не контактируют
  • Электроизоляционная — леммоциты (шванновские клетки) закручиваются вокруг отростков нейронов и формируют миелиновую оболочку
  • Барьерная и защитная — изолируют нейроны от тканей внутренней среды организма
  • Некоторые глиоциты секретируют цереброспинальную (спинномозговую) жидкость — ликвор (от лат. liquor — жидкость)

В состав нейроглии входят разные клетки, их в десятки раз больше чем самих нейронов. В периферическом отделе нервной
системы миелиновая оболочка, изученная нами, образуется именно из нейроглии — шванновских клеток (леммоцитов). Между ними хорошо
заметны перехваты Ранвье — участки, лишенные миелиновой оболочки, между двумя смежными шванновскими клетками.

Строение нейрона

Классификация нейронов

Нейроны функционально подразделяются на чувствительные, двигательные и вставочные.

Классификация нейронов по функции

Чувствительные нейроны также называются афферентные, центростремительные, сенсорные, воспринимающие — они воспринимают раздражения, преобразуют их в нервные импульсы и передают в ЦНС. Рецептором называют концевое окончание чувствительных нервных
волокон, воспринимающих раздражитель.

Вставочные нейроны также называются промежуточные, ассоциативные — они обеспечивают связь между чувствительными и двигательными
нейронами, передают возбуждение в различные отделы ЦНС, участвуют в обработке информации и выработке команд.

Двигательные нейроны по-другому называются эфферентные, центробежные, мотонейроны — они передают нервный импульс (возбуждение) на
эффектор (рабочий орган). Наиболее простой пример взаимодействия нейронов — коленный рефлекс (однако вставочного нейрона
на данной схеме нет). Более подробно рефлекторные дуги и их виды мы изучим в разделе, посвященном нервной системе.

Схема коленного рефлекса

Синапс

На схеме выше вы наверняка заметили новый термин — синапс (греч. sýnapsis — соединение). Синапсом называют место контакта между двумя нейронами или между
нейроном и эффектором (органом-мишенью). В синапсе нервный импульс «преобразуется» в химический: происходит выброс особых
веществ — нейромедиаторов (наиболее известный — ацетилхолин) в синаптическую щель.

Разберем строение синапса на схеме. Его составляют пресинаптическая мембрана аксона, рядом с которой расположены везикулы (лат. vesicula — пузырек) с
нейромедиатором внутри (ацетилхолином). Если нервный импульс достигает терминали (окончания) аксона, то везикулы начинают
сливаться с пресинаптической мембраной: ацетилхолин поступает наружу, в синаптическую щель.

Схема синапса

Попав в синаптическую щель, ацетилхолин связывается с рецепторами на постсинаптической мембране, таким образом, возбуждение (нервный импульс)
передается другому нейрону. Так устроена нервная система: электрический путь передачи сменяется
химическим (в синапсе).

Яд кураре

Гораздо интереснее изучать любой предмет на примерах, поэтому я постараюсь как можно чаще радовать вас ими ;) Не могу утаить
историю о яде кураре, который используют индейцы для охоты с древних времен.

Этот яд блокирует ацетилхолиновые рецепторы на постсинаптической мембране, и, как следствие, химическая передача возбуждения с
одного нейрона на другой становится невозможна. Это приводит к тому, что нервные импульсы перестают поступать к эффекторам,
в том числе к дыхательным мышцам (межреберным, диафрагме), вследствие чего дыхание останавливается и наступает смерть животного.

Яд кураре

Нервы и нервные узлы

Собираясь вместе, отростки нейронов (нервные волокна) образуют пучки нервных волокон. Нервные пучки объединяются в нервы, которые покрыты соединительнотканной оболочкой.
В случае, если тела нейронов концентрируются в одном месте за пределами центральной нервной системы, их скопления
называют нервным узлом — или ганглием (от др.-греч. γάγγλιον — узел).

В случае сложных соединений между нервными волокнами говорят о нервных сплетениях. Одно из наиболее известных —
плечевое сплетение.

Плечевое сплетение

Болезни нервной системы

Неврологические болезни могут развиваться в любой точке нервной системы: от этого будет зависеть клиническая картина. В случае повреждения
чувствительного пути пациент перестает чувствовать боль, холод, тепло и другие раздражители в зоне иннервации пораженного нерва, при этом
движения сохранены в полном объеме.

Если повреждено двигательное звено, движение в пораженной конечности будет
невозможно: возникает паралич, но чувствительность может сохраняться.

Существует тяжелое мышечное заболеванием — миастения (от др.-греч. μῦς — «мышца» и ἀσθένεια — «бессилие, слабость»), при
котором собственные антитела разрушают мотонейроны (двигательные нейроны).

Миастения

Постепенно любые движения мышцами становятся для пациента все труднее,
становится тяжело долго говорить, повышается утомляемость. Наблюдается характерный симптом — опущение верхнего века.
Болезнь может привести к слабости диафрагмы и дыхательных мышц, вследствие чего дыхание становится невозможным.

© Беллевич Юрий Сергеевич 2018-2023

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Понравилась статья? Поделить с друзьями:
  • Аксон представляет собой основная структурно функциональная
  • Аксон оставить отзыв
  • Аксон почтовый ящик купить
  • Аксон осб цены ярославль
  • Аксон потолочные сушилки для белья