Перейти к содержимому
Базовый курс орфографии французского языка
Accent aigu — é
Ставится над буквой «е» для обозначения звука [e] и только в открытом слоге ! Открытый слог — это слог, который заканчивается на гласную букву (считаются только те буквы, которые произносятся):
été (é — té), répéter (ré — pé — ter)
é часто бывает первой или последней буквой в слове.
Исключение:
Не ставят никакого знака перед конечными -r, -z, -d, -f: parler, nez, pied, clef.
Accent grave — è
1. Ставится над буквой «е» в закрытом слоге (слоге, который заканчивается на согласный), за которым следует «е немое», если слог заканчивается:
- на один согласный: le père; la crème;
- на группу неделимых согласных (это сочетание «согласный + сонант», где сонантами выступают такие звуки, как [r] и [l]): une règle;
- на буквенное сочетание, произносимое, как один согласный звук: une bibliothèque.
Исключение:
Не ставят никакого знака над «е» перед двойными согласными: pelle, trompette.
Не ставят никакого знака над «е» перед x: сirconflexe, mexicain.
2. В некоторых словах ставится над «е» перед буквой «s» в конечном открытом слоге (причем конечная «s» не произносится): un congrès, très.
У французов есть еще буквы «ê» и «ë». Об особенностях «домика» и «двоеточия» читайте комментарий от 05.12.12. (Огромное спасибо Ксении за подробное объяснение.)
Как аксан влияет на чтение буквы «е»
Как поставить аксаны в печатном тексте
Упражнения
Упражнение 1
Упражнение 2
Упражнение 3
Каждый нейрон состоит из одного аксона, тела (перикариона) и нескольких дендритов, в зависимости от числа которых нервные клетки делятся на униполярные, биполярные или мультиполярные. Передача нервного импульса происходит от дендритов (или от тела клетки) к аксону, а затем сгенерированный потенциал действия от начального сегмента аксона передаётся назад к дендритам. Если аксон в нервной ткани соединяется с телом следующей нервной клетки, такой контакт называется аксо-соматическим, с дендритами — аксо-дендритический, с другим аксоном — аксо-аксональный (редкий тип соединения, встречается в ЦНС).
Концевые участки аксона — терминали — ветвятся и контактируют с другими нервными, мышечными или железистыми клетками. На конце аксона находится синаптическое окончание — концевой участок терминали, контактирующий с клеткой-мишенью. Вместе с постсинаптической мембраной клетки-мишени синаптическое окончание образует синапс. Через синапсы передаётся возбуждение.
Значение слова «АКСОН» найдено в 70 источниках
АКСОН
нейрит, осевой цилиндр, отросток нервной клетки, по которому нервные импульсы идут от тела клетки к иннервируемым органам и др. нервным клеткам. От каждой нервной клетки (Нейрона) отходит только один А. Питание и рост А. зависят от тела нейрона: при перерезке А. его периферическая часть отмирает, а центральная сохраняет жизнеспособность. При диаметре в несколько мкм длина А. может достигать у крупных животных 1 м и более (например, А., идущие от нейронов спинного мозга в конечности). У некоторых животных (например, кальмаров, рыб) встречаются гигантские А. толщиной в сотни мкм. В протоплазме А. — аксоплазме — имеются тончайшие волоконца — нейрофибриллы, а также Митохондрии и Эндоплазматическая сеть. В зависимости от того, покрыты ли А. миелиновой (мякотной) оболочкой или лишены её, они образуют мякотные или безмякотные Нервные волокна. Структура оболочек и диаметр А., составляющих нервное волокно, — факторы, определяющие скорость передачи возбуждения по нерву. Концевые участки А. — терминали — ветвятся и контактируют с др. нервными, мышечными или железистыми клетками. Через эти контакты (Синапсы) передаётся возбуждение. Нерв — это совокупность А.
аксон м. Отросток нервной клетки, проводящий импульс от тела клетки к другим нервным клеткам и органам.
аксон
неврит, нервный отросток, нейрит
Словарь русских синонимов.
аксон
сущ., кол-во синонимов: 3
• неврит (5)
• нейрит (3)
• отросток (27)
Словарь синонимов ASIS.В.Н. Тришин.2013.
.
Синонимы:
неврит, нейрит, отросток
(гр. axon ось) анат. иначе нейрит — отросток нервной клетки (нейрона), проводящий нервный импульс от тела клетки к иннервируемым (см. иннервация) органам и другим нервным клеткам; совокупность аксонов составляет нерв; от каждой клетки отходит только один а. ср. дендриты 4).
Новый словарь иностранных слов.- by EdwART, ,2009.
[от гр.ось] – анат. (осевоцилиндрический) отросток нервной клетки, дающий начало нервному волокну
Большой словарь иностранных слов.- Издательство «ИДДК»,2007.
а, м. (< греч. ахоn ось, стержень).
анат. Отросток нервной клетки (нейрона), проводящий испульс от этой клетки к иннервируемым (см. иннервация) органам и другим нервным клеткам; то же, что нейрит.
|| Ср. дендрит.
Толковый словарь иностранных слов Л. П. Крысина.- М: Русский язык,1998.
Синонимы:
неврит, нейрит, отросток
АКСОН
(от греч. ахon — ось), нейрит, осевой цилиндр, одиночный, редко ветвящийся, удлинённый (до 1 м) цитоплазматич. отросток нейрона, проводящий нервные импульсы от тела клетки и дендритов к др. нейронам или эффекторным органам. Цитоплазма (аксоплазма) А. ограничена мембраной (аксолеммой) и содержит микротрубочки, нейрофиламенты, митохондрии, эндоплазматич. сеть, синаптич. пузырьки и плотные тельца. Перемещение аксоплазмы в нейронах (1—5 мм в сут) способствует непрерывному обновлению структурных белков (напр., при регенерации А-). Диаметр А. относительно постоянен по всей длине, прямо пропорционален размеру тела нейрона и зависит от его функций. Начальный сегмент А.— аксонный холмик — наиболее возбудим и является местом генерации нервных импульсов. Конпевые разветвления А. (терминали) образуют синаптич. контакты с др. нейронами, мышечными или железистыми клетками (см. СИНАПСЫ). Пучки А. образуют нервные волокна. (см. НЕЙРОН) рис. при ст.
.(Источник: «Биологический энциклопедический словарь.» Гл. ред. М. С. Гиляров; Редкол.: А. А. Бабаев, Г. Г. Винберг, Г. А. Заварзин и др. — 2-е изд., исправл. — М.: Сов. Энциклопедия, 1986.)
Синонимы:
неврит, нейрит, отросток
(от греч. áxōn ось) — нейрит, осевой цилиндр, отросток нервной клетки, по которому нервные импульсы идут от тела клетки к иннервируемым органам и др. нервным клеткам. От каждой нервной клетки (нейрона) отходит только один аксон. При диаметре в несколько мкм длина может достигать у крупных животных 1 м и более. В протоплазме аксона (аксоплазме) имеются волокна — нейрофибриллы, а также митохондрии и эндоплазматическая сеть. Структура миелиновой оболочкой и диаметр аксонов, составляющих нервное волокно, — факторы, определяющие скорость передачи возбуждения по нерву. Концевые участки аксона — терминали — ветвятся и контактируют с др. нервными, мышечными или железистыми клетками. Через эти контакты (синапсы) передается возбуждение. Нерв — это совокупность аксонов.
Синонимы:
неврит, нейрит, отросток
(axon) нервное волокно: единичный отросток, отходящий от тела клетки нейрона и передающий от него нервные импульсы. В некоторых нейронах аксон может достигать более одного метра в длину. Большинство аксонов покрыты миелиновой оболочкой (миелин это многократно закрученный двойной слой плазматической мембраны шванновской клетки). На границе между двумя соседними шванновскими клетками образуется узловой перехват Ранвье (nodes of Ranvier). Аксон заканчивается телодендроном множеством концевых разветвлений (telodendria); они контактируют с другими нервами, мышечными волокнами или клетками.
АКСОН, отросток нервной клетки, или НЕЙРОНА, которая передает нервный импульс за пределы клетки, например, импульс, вызывающий движение мышцы. Как правило, у каждого нейрона есть лишь один аксон, продолговатый и неразветвленный. У всех периферийных нервов, а также в центральной нервной системе, за исключением мозга головного и спинного, они покрыты блестящей жировой (мякотной) МИЕЛИНОВОЙ ОБОЛОЧКОЙ. У аксонов периферийных нервов есть еще дополнительная тончайшая оболочка, нейрилема, которая способствует регенерации поврежденных нервов.
1) Орфографическая запись слова: аксон
2) Ударение в слове: акс`он
3) Деление слова на слоги (перенос слова): аксон
4) Фонетическая транскрипция слова аксон : [кс`он]
5) Характеристика всех звуков:
а а — гласный, безударный
к [к] — согласный, твердый, глухой, парный
с [с] — согласный, твердый, глухой, парный
о [`о] — гласный, ударный
н [н] — согласный, твердый, звонкий, непарный, сонорный
5 букв, 4 звук
АКСО́Н, а, ч., анат.
Відросток нервової клітини, що проводить імпульс від тіла клітини до інших нервових клітин та органів.
Від кожної нервової клітини відходить лише один аксон (з навч. літ.).
АКСОН, axon, i, n (rp. axon) —нитевидный отросток нейроцита, в котором большинство клеточных органелл отсутствует. В физиологическом смысле А. называется тот единственный отросток, по которому импульсы передаются от тела нейрона к другим нейроцитам или к тканям рабочих органов. Согласно физиологической концепции существуют лишь монаксонные нейроны, морфологи же различают и биаксонные нервные клетки (чувствительные нейроциты).
аксон.
См. нейрит.
(Источник: «Англо-русский толковый словарь генетических терминов». Арефьев В.А., Лисовенко Л.А., Москва: Изд-во ВНИРО, 1995 г.)
Синонимы:
неврит, нейрит, отросток
корень — АКСОН; нулевое окончание;
Основа слова: АКСОН
Вычисленный способ образования слова: Бессуфиксальный или другой
∩ — АКСОН; ⏰
Слово Аксон содержит следующие морфемы или части:
- ¬ приставка (0): —
- ∩ корень слова (1): АКСОН;
- ∧ суффикс (0): —
- ⏰ окончание (0): —
axon(e), axial fiber, axis cylinder, long neuron(e)
— аксон нервной клетки
(от греч. axon — ось) — отросток нервной клетки, проводящий нервные импульсы от тела клетки к др. нервным клеткам или иннервируемым органам. Пучки аксонов образуют нервы.
Начала современного естествознания. Тезаурус. — Ростов-на-Дону.В.Н. Савченко, В.П. Смагин.2006.
Синонимы:
неврит, нейрит, отросток
аксон; ч.
(гр., вісь)
неврит; 1. Запалення нерва у людини і тварин, що розвивається при його ушкодженні, переохолодженні тіла, внаслідок інфекційного захворювання, отруєння; нейрит.
2. Відросток нервової клітини, по якому проходять нервові імпульси від клітини.
Див. також:
іннервація,
нейрит
(от греч. ось) (нейрит, осевой цилиндр), отросток нерв. клетки (нейрона), проводящий нерв. импульсы от тела клетки к иннервируемым органам или др. нерв. клеткам. Пучки А. образуют нервы. Ср. Дендрит.
Синонимы:
неврит, нейрит, отросток
[от греч. axon ось] анат. одиночный, удлиненный (до 1 м) отросток нервной клетки (нейрона), проводящий нервные импульсы от тела клетки и дендритов к другим нейронам или эффекторным органам и от эффекторов в ЦНС; совокупность аксонов составляет нерв (ср. дендрит); (см. также Нейрит)
Rzeczownik
аксон m
Biologiczny akson m
АКСОН (от греч . axon — ось) (нейрит, осевой цилиндр), отросток нервной клетки (нейрона), проводящий нервные импульсы от тела клетки к иннервируемым органам или др. нервным клеткам. Пучки аксонов образуют нервы. Ср. Дендрит.
АКСОН (от греч . axon — ось) (нейрит, осевой цилиндр), отросток нервной клетки (нейрона), проводящий нервные импульсы от тела клетки к иннервируемым органам или др. нервным клеткам. Пучки аксонов образуют нервы. Ср. Дендрит.
отросток нейрона, проводящий нервные импульсы к другим нейронам или к эффекторам.
а́ксон,
а́ксоны,
а́ксона,
а́ксонов,
а́ксону,
а́ксонам,
а́ксон,
а́ксоны,
а́ксоном,
а́ксонами,
а́ксоне,
а́ксонах
(Источник: «Полная акцентуированная парадигма по А. А. Зализняку»)
.
Синонимы:
неврит, нейрит, отросток
АКСОН (от греч. axon — ось) (нейрит — осевой цилиндр), отросток нервной клетки (нейрона), проводящий нервные импульсы от тела клетки к иннервируемым органам или др. нервным клеткам. Пучки аксонов образуют нервы. Ср. Дендрит.
АКСОН (от греч. axon — ось) — единственный отросток нервной клетки (нейрона), проводящий нервные импульсы от тела клетки к эффекторам или др. нейронам. Ср. Кора головного мозга, Мозг, Нервная система, Синапсы.
— (от греч. axon — ось) (нейрит — осевой цилиндр), отросток нервнойклетки (нейрона), проводящий нервные импульсы от тела клетки киннервируемым органам или др. нервным клеткам. Пучки аксонов образуютнервы. Ср. Дендрит.
(греч. axon ось) длинный отросток нервного волокна, идущий от тела нервной клетки; служит для передачи потенциалов действия от тела одного нейрона к другим нейронам и исполнительным органам, например, мышцам.
(от греч. axon — ось) — единственный отросток нервной клетки (нейрона), проводящий нервные импульсы от тела клетки к эффекторам или др. нейронам. Ср. Кора головного мозга, Мозг, Нервная система, Синапсы.
аксон (axon, LNH; греч. axon ось; син.: нейрит, осевой цилиндр, осевоцилиндрический отросток) — отросток нейрона, проводящий нервные импульсы к другим нейронам или к эффекторам.
Отросток нервного волокна, идущий от тела клетки нейрона, который служит для передачи потенциалов действия от тела клетки другим смежным нейронам или эффекторам, например мышцам.
(axon, LNH; греч. axon ось; син.: нейрит, осевой цилиндр, осевоцилиндрический отросток) отросток нейрона, проводящий нервные импульсы к другим нейронам или к эффекторам.
axon
* * *
аксо́н
м.
axon(e) , neurite
Синонимы:
неврит, нейрит, отросток
Ударение в слове: акс`он
Ударение падает на букву: о
Безударные гласные в слове: акс`он
1) axone
2) cylindraxe
3) fibre axiale
4) filament axial
5) neuraxone
6) neurite
7) prolongement cylindraxile, prolongement de Deiters
аксо́н
Синонимы:
неврит, нейрит, отросток
-а, ч.
Те саме, що неврит.
акс’он, -а
Синонимы:
неврит, нейрит, отросток
Аксон – что означает? Определение, значение, примеры употребления
Ищешь, что значит слово аксон? Пытаешься разобраться, что такое аксон? Вот ответ на твой вопрос:
Значение слова «аксон» в словарях русского языка
Аксон это:
аксон ( «ось») — это нейрит (длинный цилиндрический отросток нервной клетки), по которому нервные импульсы идут от тела клетки (сомы) к иннервируемым органам и другим нервным клеткам.
Каждый нейрон состоит из одного аксона, тела (перикариона) и нескольких дендритов, в зависимости от числа которых нервные клетки делятся на униполярные, биполярные или мультиполярные.
Википедия
Аксон
м.Отросток нервной клетки, проводящий импульс от тела клетки к другим нервным клеткам и органам.
Большой современный толковый словарь русского языка
Аксон
( гр. axon ось) анат. иначе нейрит — отросток нервной клетки (нейрона), проводящий нервный импульс от тела клетки к иннервируемым ( см. иннервация ) органам и другим нервным клеткам; совокупность аксонов составляет нерв; от каждой клетки отходит только один а. ср. дендриты
4).
Новый словарь иностранных слов
Аксон
м. Отросток нервной клетки, проводящий импульс от тела клетки к другим нервным клеткам и органам.
Новый толково-словообразовательный словарь русского языка Ефремовой
Аксон
[анат. иначе нейрит — отросток нервной клетки (нейрона), проводящий нервный импульс от тела клетки к иннервируемым (см. иннервация) органам и другим нервным клеткам; совокупность аксонов составляет нерв; от каждой клетки отходит только один а. (ср. дендриты
4).
Словарь иностранных выражений
Аксон
акс`он, -а
Словарь русского языка Лопатина
Аксон
(от греч. axon — ось) (нейрит, осевой цилиндр), отросток нервной клетки (нейрона), проводящий нервные импульсы от тела клетки к иннервируемым органам или др. нервным клеткам. Пучки аксонов образуют нервы. Ср. Дендрит.
Современный толковый словарь, БСЭ
Аксон
аксон м. Отросток нервной клетки, проводящий импульс от тела клетки к другим нервным клеткам и органам.
Толковый словарь Ефремовой
Аксон
(axon, lnh; греч. axon ось; син.: нейрит, осевой цилиндр, осевоцилиндрический отросток) отросток нейрона, проводящий нервные импульсы к другим нейронам или к эффекторам.
Медицинские термины
Аксон
(от греч. axon — ось), нейрит, осевой цилиндр, отросток нервной клетки, по которому нервные импульсы идут от тела клетки к иннервируемым органам и др. нервным клеткам. От каждой нервной клетки ( нейрона ) отходит только один А. Питание и рост А. зависят от тела нейрона: при перерезке А. его периферическая часть отмирает, а центральная сохраняет жизнеспособность. При диаметре в несколько мкм длина А. может достигать у крупных животных 1 м и более (например, А., идущие от нейронов спинного мозга в конечности). У некоторых животных (например, кальмаров, рыб) встречаются гигантские А. толщиной в сотни мкм. В протоплазме А. — аксоплазме — имеются тончайшие волоконца — нейрофибриллы, а также митохондрии и эндоплазматическая сеть . В зависимости от того, покрыты ли А. миелиновой (мякотной) оболочкой или лишены её, они образуют мякотные или безмякотные нервные волокна . Структура оболочек и диаметр А., составляющих нервное волокно, — факторы, определяющие скорость передачи возбуждения по нерву. Концевые участки А. — терминали — ветвятся и контактируют с др. нервными, мышечными или железистыми клетками. Через эти контакты ( синапсы ) передаётся возбуждение. Нерв — это совокупность А.
Большая советская энциклопедия, БСЭ
Аксон
аксон, -а
Полный орфографический словарь русского языка
Аксон
накос — носка
Анаграммы
Аксон
отросток нервной клетки, проводящий импульс от этой клетки к иннервируемым органам и другим нервным клеткам
Викисловарь
Где и как употребляется слово «аксон»?
Кроме значения слова «аксон» в словарях, рекомендуем также ознакомиться с примерами предложений и цитат из классической литературы, в которых употребляется слово «аксон».
Так вы сможете гораздо легче понять и запомнить, как правильно употребляется слово «аксон» в тексте и устной речи.
Примеры употребления слова «аксон»
Приходящие в окончания аксона нервные импульсы вызывают опорожнение синаптических пузырьков и выведение медиатора в синаптическую щель.
По характеру аксонов нервные клетки делятся на клетки первого типа и на клетки второго типа.
При том, что сам нейрон микроскопически мал, длина аксона может составлять до двух метров.
Синонимы, антонимы и гипонимы к слову «аксон»
Синонимы к слову «аксон»:
- неврит
- нейрит
- отросток
Разбор слова «аксон»
Аксон является ответом на вопросы из кроссвордов
- Веточка нервной клетки
- У нервной клетки много отростков-дендритов, а этот отросток — один
- С чем «контачит» синапс
- Что такое нейрит? 5 букв
- В паре с дендритами
- Часть нерва
- Отросток нерва
- Проводник в нервной системе
- Отросток нейрона, проводящий нервные импульсы
- Нейрит
Аксон 9-дневной мыши
Аксон (греч. ἀξον — ось) — нейрит, осевой цилиндр, отросток нервной клетки, по которому нервные импульсы идут от тела клетки (сомы) к иннервируемым органам и другим нервным клеткам.
Нейрон состоит из одного аксона, тела и нескольких дендритов, в зависимости от числа которых нервные клетки делятся на униполярные, биполярные, мультиполярные. Передача нервного импульса происходит от дендритов (или от тела клетки) к аксону, а затем сгенерированный потенциал действия от начального сегмента аксона передается назад к дендритам [1]. Если аксон в нервной ткани соединяется с телом следующей нервной клетки, такой контакт называется аксо-соматическим, с дендритами — аксо-дендритический, с другим аксоном — аксо-аксональный (редкий тип соединения, встречается в ЦНС).
В месте соединения аксона с телом нейрона у наиболее крупных пирамидных клеток 5-ого слоя коры находится аксонный холмик. Ранее предполагалось, что здесь происходит преобразование постсинаптического потенциала нейрона в нервные импульсы, но экспериментальные данные это не подтвердили. Регистрация электрических потенциалов выявила, что нервный импульс генерируется в самом аксоне, а именно в начальном сегменте на расстоянии ~50 мкм от тела нейрона [2]. Для генерации потенциала действия в начальном сегменте аксона требуется повышенная концентрация натриевых каналов (до ста раз по сравнению с телом нейрона[3]).
Питание и рост аксона зависят от тела нейрона: при перерезке аксона его периферическая часть отмирает, а центральная сохраняет жизнеспособность. При диаметре в несколько микронов длина аксона может достигать у крупных животных 1 метра и более (например, аксоны, идущие от нейронов спинного мозга в конечности). У многих животных (кальмаров, рыб, кольчатых червей, форонид, ракообразных) встречаются гигантские аксоны толщиной в сотни мкм (у кальмаров — до 2—3 мм). Обычно такие аксоны отвечают за проведение сигналов к мышцам, обеспечивающим «реакцию бегства» (втягивание в норку, быстрое плавание и др.). При прочих равных условиях с увеличением диаметра аксона увеличивается скорость проведения по нему нервных импульсов.
В протоплазме аксона — аксоплазме — имеются тончайшие волоконца — нейрофибриллы, а также микротрубочки, митохондрии и агранулярная (гладкая) эндоплазматическая сеть. В зависимости от того, покрыты ли аксоны миелиновой (мякотной) оболочкой или лишены её, они образуют мякотные или безмякотные нервные волокна.
Миелиновая оболочка аксонов имеется только у позвоночных. Её образуют «накручивающиеся» на аксон специальные шванновские клетки (в центральной нервной системе — олигодендроциты), между которыми остаются свободные от миелиновой оболочки участки — перехваты Ранвье. Только на перехватах присутствуют потенциал-зависимые натриевые каналы и заново возникает потенциал действия. При этом нервный импульс распространяется по миелинизированным волокнам ступенчато, что в несколько раз повышает скорость его распространения. Скорость передачи сигнала по покрытым миелиновой оболочкой аксонам достигает 100 метров в секунду.[4]
Безмякотные аксоны меньше размерами чем аксоны покрытые миелиновой оболочкой, что компенсирует потери в скорости распространения сигнала по сравнению с мякотными аксонами.
Концевые участки аксона — терминали — ветвятся и контактируют с другими нервными, мышечными или железистыми клетками. На конце аксона находится синаптическое окончание — концевой участок терминали, контактирующий с клеткой-мишенью. Вместе с постсинаптической мембраной клетки-мишени синаптическое окончание образует синапс. Через синапсы передаётся возбуждение.
Примечания
- ↑ Dendritic backpropagation and the state of the awa… [J Neurosci. 2007] — PubMed result
- ↑ Action potentials initiate in the axon initial seg… [J Neurosci. 2010] — PubMed result
- ↑ Action potential generation requires a high sodium… [Nat Neurosci. 2008] — PubMed result
- ↑ Блум Ф., Лейзерсон А., Хофстедтер Л. Мозг, разум и поведение. М., 1988
Ссылки
- Савельев А. В. Моделирование логики самоорганизации активности нервного пучка эфаптическими взаимодействиями аксонного уровня // сб.: Моделирование неравновесных систем. — Институт вычислительного моделирования СО РАН, Красноярск, 2004. — С. 142-143.
См. также
- Аксональный поиск пути
- Аксональный транспорт
- Аксон-рефлекс
- Конус роста
- Дендрит
- Валлерова дегенерация — при разрыве аксона
|
|
---|---|
Нейроны (Серое вещество) |
Сома · Аксон (Аксонный холмик, Терминаль аксона, Аксоплазма, Аксолемма, Нейрофиламенты) Дендрит (Вещество Ниссля, Дендритный шипик, Апикальный дендрит, Базальный дендрит) типы: Биполярные нейроны · Псевдополярные нейроны · Мультиполярные нейроны · Пирамидальный нейрон · Клетка Пуркинье · Гранулярная клетка |
Афферентный нерв/ Сенсорный нерв/ Сенсорный нейрон |
GSA · GVA · SSA · SVA · Нервные волокна (Мышечные веретёна (Ia), Нервно-сухожильное веретено, II or Aβ, Aδ-волокна, C-волокна) |
Эфферентный нерв/ Моторный нерв/ Моторный нейрон |
GSE · GVE · SVE · Верхний моторный нейрон · Нижний моторный нейрон (α мотонейроны, γ мотонейроны) |
Синапс | Нейропиль · Синаптический пузырек · Нервно-мышечный синапс · Электрический синапс · Химический синапс · Интернейрон (Клетки Реншоу) |
Сенсорный рецептор | Чувствительное тельце Мейснера · Нервное окончание Меркеля · Тельца Пачини · Окончание Руффини · Нервномышечное веретено · Свободное нервное окончание · Обонятельный нейрон · Фоторецепторные клетки · Волосковые клетки · Вкусовая луковица |
Нейроглия | Астроциты (Радиальная глия) · Олигодендроглиоциты · Клетки эпендимы (Танициты) · Микроглия |
Миелин (Белое вещество) |
CNS: Олигодендроцит PNS: Клетки Шванна · Невролемма · Перехват Ранвье/Межузловой сегмент · Насечка миелина |
Соединительная ткань | Эпиневрий · Периневрий · Эндоневрий · Нервные пучки · Мозговые оболочки: твёрдая, паутинная, мягкая |
Содержание
- Главное отличие — Аксон против Дендрита
- Что такое аксон
- Что такое дендрит
- Сходства между аксоном и дендритом
- Разница между аксоном и дендритом
Главное отличие — Аксон против Дендрита
Аксон и дендрит являются двумя компонентами нервных клеток. Нервные клетки являются структурными и функциональными единицами нервной системы животных. Они передают нервные импульсы в мозг, спинной мозг и тело, чтобы координировать функции организма. Аксон — это длинное коническое удлинение клеточного тела нервной клетки. У каждой нервной клетки есть аксон. Короткие структуры, которые простираются от тела клетки, называются дендритами.Одна нервная клетка имеет много дендритов. главное отличие между аксоном и дендритом является то, что аксон переносит нервные импульсы от тела клетки, тогда как дендриты переносят нервные импульсы от синапсов к телу клетки.
Ключевые области покрыты
1. Что такое аксон
— определение, характеристики, функции
2. Что такое дендрит
— определение, характеристики, функции
3. Каковы сходства между аксоном и дендритом
— Краткое описание общих черт
4. В чем разница между аксоном и дендритом
— Сравнение основных различий
Ключевые слова: аксон, аксонный бугорок, клеточное тело, дендриты, миелин, миелиновые нервные волокна, нервные клетки, немиелинизированные нервные волокна
Что такое аксон
Аксон — одиночная, длинная проекция нервной клетки. Аксоны уносят нервные импульсы от тела клетки. Мембрана, которая покрывает аксон, называется аксолеммой. Аксоплазма — это цитоплазма аксона. Аксоны разветвлены на своих терминальных концах. Кончики разветвленных концов образованы телодендрией. Терминалы аксона — это раздутые концы телодендрии. Терминалы аксона образуют синаптическую связь с дендроном другого нейрона или с эффекторным органом. Мембрана аксонного терминала связана с мембраной клетки-мишени. Везикулы, которые содержат нейротрансмиттеры, присутствуют в терминалах аксонов для передачи нервных импульсов посредством химических сигналов через синаптическую щель. Аксонный бугорок является начальным сегментом аксона. Это инициирует потенциал действия. Поперечное сечение аксона показано в Рисунок 1.
Рисунок 1: Поперечное сечение аксона
1 — аксон, 2 — ядро клетки Шванна, 3 — клетка Шванна, 4 — миелиновая оболочка
Два типа аксонов — миелинизированные аксоны и немиелинизированные аксоны. Миелиновая оболочка образует изоляцию на аксоне, чтобы увеличить скорость передачи нервных импульсов через аксон. Этот тип передачи нервных импульсов называется солевой проводимостью. Клетки Шванна секретируют миелин на аксонах периферической нервной системы. Олигодендроциты выделяют миелин на аксонах центральной нервной системы. Миелинизированные аксоны белого цвета. Пробелы в миелиновой оболочке называются узлами Ранвье. Белое вещество головного и спинного мозга состоит из миелинизированных аксонов.
Что такое дендрит
Дендрит — это коротко-разветвленное расширение, которое переносит нервные импульсы в тело клетки из синапсов. Многие дендриты распространяются из одноклеточного тела нервной клетки. Дендриты являются сильно разветвленными структурами. Эта сильно разветвленная природа увеличивает площадь поверхности, которая может принимать сигналы от синапсов. Дендриты и аксоны нервных клеток показаны в фигура 2.
Рисунок 2: Дендриты и Аксоны
Дендриты имеют сужающиеся концы. Поскольку дендриты представляют собой короткие проекции, они не миелинизируются.
Сходства между аксоном и дендритом
- И аксон, и дендрит являются проекциями клеточного тела нервной клетки.
- И аксон, и дендрит передают нервные импульсы.
- И аксон, и дендрит являются разветвленными структурами.
- И аксон, и дендрит содержат нейрофибриллы.
Разница между аксоном и дендритом
Определение
Axon: Аксон — это длинная нитевидная часть нервной клетки, которая проводит нервные импульсы от тела клетки.
Dendrite: Дендрит — это короткое разветвленное расширение нервной клетки, которое передает нервные импульсы в тело клетки из синапсов.
Число
Axon: Нервная клетка имеет только один аксон.
Dendrite: нервная клетка имеет много дендритов.
происхождения
Axon: Аксон возникает из конической проекции, называемой аксон бугорком.
Dendrite: Дендриты возникают непосредственно из нервной клетки.
длина
Axon: Аксоны очень длинные (несколько метров).
Dendrite: Дендриты очень короткие (около 1,5 мм).
Диаметр
Axon: Аксоны имеют одинаковый диаметр.
Dendrite: Дендриты имеют сужающиеся концы; поэтому диаметр постоянно уменьшается.
разветвление
Axon: Аксоны разветвлены на своих концах.
Dendrite: Дендриты все время разветвляются.
Синаптические ручки
Axon: Концы конечных ветвей аксона увеличены, чтобы сформировать синаптические ручки.
Dendrite: На кончиках ветвей дендритов не встречаются синаптические ручки.
Пузырьки
Axon: Синаптические ручки аксонов содержат везикулы с нейротрансмиттерами.
Dendrite: Дендриты не имеют пузырьков, которые содержат нейротрансмиттеры.
Гранулы Ниссля
Axon: Аксоны не содержат гранул Ниссля.
Dendrite: Дендриты содержат гранулы Ниссля.
Миелиновый / Non-миелинизированный
Axon: Аксоны могут быть миелинизированными или немиелинизированными.
Dendrite: Дендриты немиелинизированы.
Направление передачи
Axon: Аксоны уносят нервные импульсы от тела клетки.
Dendrite: Дендриты несут нервные импульсы к телу клетки.
Афферентные / Эфферентная
Axon: Аксоны образуют эфферентный компонент нервного импульса.
Dendrite: Дендриты образуют афферентный компонент нервного импульса.
Заключение
Аксон и дендрит — это два типа проекций нервной клетки. И аксоны, и дендриты передают нервные импульсы. Аксон длиннее дендрита. Диаметр аксона является однородным, в то время как дендриты состоят из сужающихся концов. Некоторые аксоны миелинизированы, чтобы ускорить передачу нервных импульсов. Аксоны передают нервные импульсы от тела клетки, а дендриты передают нервные импульсы к телу клетки. Поэтому основным отличием аксона от дендрита является направление передачи нервных импульсов.
Ссылка:
1. «Аксон». Википедия, Фонд Викимедиа, 1 сентября 2017 г.,
Нервная система состоит из нейронов (специфических клеток, имеющих отростки) и нейроглии (она заполняет пространство между нервными клетками в ЦНС). Главное отличие между ними заключается в направлении передачи нервного импульса. Дендриты – это принимающие ответвления, по ним сигнал идет к телу нейрона. Передающие клетки – аксоны – проводят сигнал от сомы к принимающим. Это могут быть не только отростки нейрона, но и мышцы.
Отличия аксонов и дендритов
Какова же разница между ними? Рассмотрим.
- Дендрит нейрона короче передающего отростка.
- Аксон всего один, принимающих ответвлений может быть много.
- Дендриты сильно ветвятся, а передающие отростки начинают разделяться ближе к концу, образуя синапс.
- Дендриты истончаются по мере удаления от тела нейрона, толщина аксонов практически неизменна по всей длине.
- Аксоны покрыты миелиновой оболочкой, состоящей из липидных и белковых клеток. Она выполняет роль изолятора и защищает отросток.
Поскольку нервный сигнал передается в виде электрического импульса, клеткам необходима изоляция. Её функции выполняет миелиновая оболочка. Она имеет мельчайшие разрывы, способствующие более быстрой передаче сигнала. Дендриты – это безоболочечные отростки.
Определение
Мозговое вещество – высокоорганизованная структура, образованная нервными клетками, от которых отходят аксоны. Из нервных клеток состоит мозговая ткань. Аксон в переводе с греческого означает «ось» – это такой отросток, элемент мозгового вещества, который обеспечивает взаимодействие между клетками разного типа (нейроны, клетки иннервируемых органов), что ассоциируется с тонким, четким управлением работой органов и систем. Функции ткани ЦНС:
- Воспринимает раздражения, преобразуя их в импульсы.
- Поддерживает передачу импульсов от управляющих отделов мозга к исполнительным органам.
- Формирует ответную реакцию на раздражающее воздействие.
- Обеспечивает взаимодействие в работе систем и органов, поддерживает интеграцию структурных единиц организма.
- Обеспечивает взаимосвязь организма с внешней средой.
Согласно определению в биологии, аксон (англ. axon) – удлиненный отросток, по которому идут импульсы от тела нейрона к другим нервным клеткам и структурным элементам всех тканей организма. Мозговая ткань в период внутриутробного развития образуется из нервной пластины. Края пластинки прогибаются, что приводит к формированию валиков и желобка. В результате смыкания краев валиков возникает нервная трубка – основа ЦНС.
Дифференциация клеток, образующих трубку, приводит к появлению нейробластов и спонгиобластов. Первые служат основой для формирования нейронов, вторые – для образования нейроглии. Нейроны (анат.) – основные структурные элементы мозгового вещества. Они характеризуются отсутствием функции деления, что приводит к постепенному уменьшению их численности. Тело нейрона состоит из ядра и цитоплазмы. В зависимости от типа нейронов меняется геометрическая форма тела, которая бывает круглая, овальная, пирамидальная и другая.
Цитоскелет, состоящий из микротрубочек и нейрофибриллов, обеспечивает опорную и трофическую функцию. Цитоскелет поддерживает форму нейрона, обеспечивает транспорт веществ и органелл. От тела ответвляются отростки – единичный аксон и множественные дендриты. Аксон нейрона почти не ветвится, иногда образует коллатеральные (обходные) сегменты. Концевые сегменты (окончания) разветвляются, называются терминали.
Терминали взаимосвязаны с окончаниями других нейронов и с клетками, образующими паренхиму (ткань) рабочих органов – мышц, желез. Количество дендритов варьируется от 1 до нескольких. Тонкие ответвления дендритов оканчиваются небольшими шипами, где сосредоточены терминали аксональных отростков многих тысяч других клеток. Дендриты воспринимают раздражения или потенциалы действия от других клеток и передают их по волокнам к телу своего нейрона.
Рост аксона зависит от особенностей строения и жизнедеятельности нейрона, который поддерживает функцию питания отростка. К примеру, если перерезать аксональный ствол, сегмент, связанный с телом, остается жизнеспособным и продолжает деятельность, участок, утративший связь с телом, отмирает. Аксоны образуют нервы, что предполагает сложную структурно-морфологическую организацию ЦНС.
Синапс
Место, в котором происходит контакт между ответвлениями нейронов или между аксоном и принимающей клеткой (например, мышечной), называется синапсом. В нем может участвовать всего по одному ответвлению от каждой клетки, но чаще всего контакт происходит между несколькими отростками. Каждый вырост аксона может контактировать с отдельным дендритом.
Сигнал в синапсе может передаваться двумя способами:
- Электрическим. Это происходит только в случае, когда ширина синаптической щели не превышает 2 нм. Благодаря такому маленькому разрыву импульс проходит через него, не задерживаясь.
- Химическим. Аксоны и дендриты вступают в контакт благодаря разнице потенциалов в мембране передающего отростка. С одной ее стороны частицы имеют положительный заряд, с другой – отрицательный. Это обусловлено разной концентрацией ионов калия и натрия. Первые находятся внутри мембраны, вторые – снаружи.
При прохождении заряда увеличивается проницаемость мембраны, и натрий входит в аксон, а калий выходит из него, восстанавливая потенциал.
Сразу после контакта отросток становится невосприимчивым к сигналам, через 1 мс способен к передаче сильных импульсов, через 10 мс возвращается в исходное состояние.
Дендриты – это принимающая сторона, передающая импульс от аксона телу нервной клетки.
Особенности, характерные для типичных дендритов и аксонов
⇐ ПредыдущаяСтр 3 из 14Следующая ⇒
Дендриты | Аксоны |
От тела нейрона отходит несколько дендритов | У нейрона имеется только один аксон |
Длина редко превышает 700 мкм | Длина может достигать 1 м |
По мере удаления от тела клетки диаметр быстро уменьшается | Диаметр сохраняется на значительном расстоянии |
Образовавшиеся в результате деления ветви локализуются возле тела | Терминали располагаются далеко от тела клетки |
Имеются шипики | Шипики отсутствуют |
Не содержат синаптических пузырьков | Содержат в большом числе синаптические пузырьки |
Содержат рибосомы | Рибосомы могут обнаруживаться в незначительном числе |
Лишены миелиновой оболочки | Часто окружены миелиновой оболочкой |
Терминали дендритов чувствительных нейронов образуют чувствительные окончания. Основной функцией дендритов является получение информации от других нейронов. Дендриты проводят информацию к телу клетки, а затем к аксонному холмику.
Аксон. Аксоны образуют нервные волокна, по которым передается информация от нейрона к нейрону или к эффекторному органу. Совокупность аксонов образует нервы.
Общепринято подразделение аксонов на три категории: А, В и С. Волокна группы А и В являются миелинизированными, а С – лишены миелиновой оболочки. Диаметр волокон группы А, которые составляют большинство коммуникаций центральной нервной системы, варьирует от 1 до 16 мкм, а скорость проведения импульсов равна их диаметру, умноженному на 6. Волокна типа А подразделяются на Аa, Аb, Аl, Аs. Волокна Аb, Аl, Аs имеют меньший диаметр, чем волокна Аa, меньшую скорость проведения и более длительный потенциал действия. Волокна Аb и Аs являются преимущественно чувствительными волокнами, которые проводят возбуждение от различных рецепторов в ЦНС. Волокна Аl – это волокна, которые проводят возбуждение от клеток спинного мозга к интрафузальным мышечным волокнам. В-волокна являются характерными для преганглионарных аксонов вегетативной нервной системы. Скорость проведения 3-18 м/с, диаметр 1-3 мкм, продолжительность потенциала действия 1-2 мс, нет фазы следовой деполяризации, а есть длительная фаза гиперполяризации (более 100 мс). Диаметр С-волокон от 0,3 до 1,3 мкм, и скорость проведения импульсов в них несколько меньше величины диаметра, умноженного на 2, и равняется 0,5-3 м/с. Длительность потенциала действия этих волокон составляет 2 мс, отрицательный следовой потенциал равняется 50-80 мс, а положительный следовой потенциал – 300-1000 мс. Большинство С-волокон являются постганглионарными волокнами вегетативной нервной системы. В миелинизированных аксонах скорость проведения импульсов выше, чем в немиелизированных.
Аксон содержит аксоплазму. У крупных нервных клеток ей принадлежит около 99% всей цитоплазмы нейрона. Цитоплазма аксонов содержит микротрубочки, нейрофиламенты, митохондрии, агранулярный эндоплазматический ретикулум, везикулы и мультивезикулярные тела. В разных частях аксона существенно меняются количественные отношения между этими элементами.
У аксонов, как миелинизированных, так и немиелизированных, есть оболочка – аксолемма.
В зоне синаптического контакта мембрана получает ряд дополнительных цитоплазматических соединений: плотные выступы, ленты, субсинаптическая сеть и др.
Начальный участок аксона (от его начала до того места, где наступает сужение до диаметра аксона) носит название аксонного холмика. От этого места и появления миелиновой оболочки простирается начальный сегмент аксона. В немиелинизированных волокнах эта часть волокна определяется с трудом, а некоторые авторы считают, что начальный сегмент присущ только тем аксонам, которые покрыты миелиновой оболочкой. Он отсутствует, например, у клеток Пуркинье в мозжечке.
В месте перехода аксонного холмика в начальный сегмент аксона под аксолеммой появляется характерный электронноплотный слой, состоящий из гранул и фибрилл, толщиной 15 нм. Этот слой не связан с плазматической мембраной, а отделен от нее промежутками до 8 нм.
В начальном сегменте по сравнению с телом клетки резко уменьшается количество рибосом. Остальные компоненты цитоплазмы начального сегмента – нейрофиламенты, митохондрии, везикулы – переходят из аксонного холмика сюда, не изменяясь ни по внешнему виду, ни по взаиморасположению. На начальном сегменте аксона описаны аксо-аксональные синапсы.
Часть аксона, покрытая миелиновой оболочкой, обладает только ей присущими функциональными свойствами, которые связаны с проведением нервных импульсов с большой скоростью и без декремента (затухания) на значительные расстояния. Миелин является продуктом жизнедеятельности нейроглии. Проксимальной границей у миелинизированного аксона служит начало миелиновой оболочки, а дистальной – утрата ее. Далее следуют более или менее длинные терминальные отделы аксона. В этой части аксона отсутствует гранулярный эндоплазматический ретикулум и очень редко встречаются рибосомы. Как в центральных отделах нервной системы, так и на периферии аксоны окружены отростками глиальных клеток.
Миелинизированная оболочка имеет сложное строение. Ее толщина варьирует от долей до 10 мкм и более. Каждая из концентрически расположенных пластинок состоит из двух наружных плотных слоев, образующих главную плотную линию, и двух светлых бимолекулярных слоев липидов, разделенных промежуточной осмиофильной линией. Промежуточная линия аксонов периферической нервной системы представляет собой соединение наружных поверхностей плазматических мембран шванновской клетки. Каждый аксон сопровождается большим числом шванновских клеток. Место, где шванновские клетки граничат между собой, лишено миелина и называется перехватом Ранвье. Между длиной межперехватного участка и скоростью проведения нервных импульсов есть прямая зависимость.
Перехваты Ранвье составляют сложную структуру миелинизированных волокон и играют важную функциональную роль в проведении нервного возбуждения.
Протяженность перехвата Ранвье миелинизированных аксонов периферических нервов находится в пределах 0,4-0,8 мкм, в центральной нервной системе перехват Ранвье достигает 14 мкм. Длина перехватов довольно легко изменяется под действием различных веществ. В области перехватов, помимо отсутствия миелиновой оболочки, наблюдаются значительные изменения структуры нервного волокна. Диаметр крупных аксонов, например, уменьшается наполовину, мелкие аксоны изменяются меньше. Аксолемма имеет обычно неправильные контуры, и под ней лежит слой электронноплотного вещества. В перехвате Ранвье могут быть синаптические контакты как с прилежащими к аксону дендритами (аксо-дендритические), так и с другими аксонами.
Коллатерали аксонов. С помощью коллатералей происходит распространение нервных импульсов на большее или меньшее число последующих нейронов.
Аксоны могут делиться дихотомически, как, например, у зернистых клеток мозжечка. Очень часто встречается магистральный тип ветвления аксонов (пирамидные клетки коры мозга, корзинчатые клетки мозжечка). Коллатерали пирамидных нейронов могут быть возвратными, косоидущими и горизонтальными. Горизонтальные ответвления пирамид простираются иногда на 1-2 мм, объединяя пирамидные и звездчатые нейроны своего слоя. От горизонтально распространяющегося (в поперечном направлении к длинной оси извилины мозга) аксона корзинчатой клетки образуются многочисленные коллатерали, которые заканчиваются сплетениями на телах крупных пирамидных клеток. Подобные аппараты, так же как и окончания на клетках Реншоу в спинном мозге, являются субстратом для осуществления процессов торможения.
Коллатерали аксонов могут служить источником образования замкнутых нейронных цепей. Так, в коре больших полушарий все пирамидные нейроны имеют коллатерали, которые принимают участие во внутрикорковых связях. За счет существования коллатералей обеспечивается в процессе ретроградной дегенерации сохранность нейрона в том случае, если повреждается основная ветвь его аксона.
Терминали аксонов. К терминалям относятся дистальные участки аксонов. Они лишены миелиновой оболочки. Протяженность терминалей значительно варьирует. На светооптическом уровне показано, что терминали могут быть либо одиночными и иметь форму булавы, сетевидной пластинки, колечка, либо множественными и походить на кисть, чашевидную, моховидную структуру. Размер всех этих образований изменяется от 0,5 до 5 мкм и более.
Тонкие разветвления аксонов в местах контакта с другими нервными элементами нередко имеют веретеновидные или бусинковидные расширения. Как показали электронно-микроскопические исследования, именно в этих участках имеются синаптические соединения. Одна и та же терминаль дает возможность одному аксону устанавливать контакт с множеством нейронов (например, параллельные волокна в коре головного мозга) (рис. 1.2).
Функции нервных волокон
Распространение возбуждения в нервных волокнах.Изменения мембранного потенциала, вызываемые электрическим током, подразделяются на пассивные и активные.
Пассивные, или электротонические, изменения мембранного потенциала определяются физическими (электрическими) параметрами как самой мембраны, так и всей клетки (волокна) в целом.
Пассивные сдвиги мембранного потенциала возникают при действии на возбудимые образования электрического тока любой силы, формы или направления. Однако если при гиперполяризующем (анодном) и слабом деполяризующем (катодном) токах пассивные изменения потенциала могут наблюдаться в чистом (неосложненном) виде, то при близких к порогу и сверхпороговых деполяризующих стимулах они сопровождаются активными сдвигами потенциала: локальным ответом и потенциалом действия, связанными с изменениями ионной проницаемости мембраны.
Пассивные свойства мембраны и всего волокна в целом в значительной мере определяют условия возникновения и распространения возбуждения в нервном волокне.
Исследования показывают, что в однородно поляризуемом, однородном участке нервного волокна изменения мембранного потенциала при приложении прямоугольного толчка гиперполяризующего или слабого деполяризующего тока нарастают по экспоненте:
,
где RC = τ
– постоянная времени мембраны, т.е. время, в течение которого потенциал нарастает до 63% от своей конечной величины. При выключении тока потенциал возвращается к исходному уровню по экспоненте с той же постоянной времени
τ
. Такие изменения мембранного потенциала принято называть пассивными или электротоническими, в отличие от активных, связанных с повышением или снижением ионных проводимостей мембраны.
Подобные изменения наблюдаются на сферических клетках (на соме). Описание цилиндрической клетки, в частности аксона, более сложно. В этом случае уже нельзя считать внутренний проводник эквипотенциальным по всей длине. Внешний проводник можно считать эквипотенциальным за счет увеличения объема внеклеточной жидкости. Потенциал на такой мембране зависит не только от времени включения тока, но и от расстояния х
по отношению к месту приложения тока:
,
где а
– радиус волокна,
R
– удельное сопротивление аксоплазмы,
CМ
и
RМ
– емкость и сопротивление на единицу площади мембраны. Левая часть уравнения описывает плотность тока через каждую точку мембраны, которая равна сумме плотностей емкостного ()и омического () токов, стоящих в правой части уравнения.
Через длительное время (намного большего постоянной времени t = RМ CМ
) после включения импульса емкость мембраны полностью зарядится и емкостный ток станет равным нулю. Уравнение примет вид:
.
Его решение:
,
где V0
– потенциал в начале кабеля (
х
= 0),
l
– постоянная длины волокна.
Постоянная длины характеризует крутизну затухания потенциала вдоль волокна. Чем больше l
, тем дальше по волокну проходит сигнал. Скорость электротонического распространения пропорциональна удвоенной величине константы длины волокна
l
и обратно пропорциональна постоянной времени
t = RМ CМ
. Величина
l
может быть выражена через сопротивление мембраны
RМ
, сопротивление внутренней среды – аксоплазмы
Ri
и диаметра волокна
d
:
.
Кабельные свойства нервных волокон оказывают существенное влияние не только на развитие электротонических потенциалов, но и на характер активных ответов – величину порога, амплитуду, крутизну нарастания и длительность потенциала действия.
В настоящее время можно считать строго доказанным, что проведение потенциала действия (ПД) вдоль нервного волокна осуществляется с помощью локальных токов, возникающих между возбужденным и покоящимся участками мембраны. Локальный ток изменяет величину мембранного потенциала покоя в покоящемся участке до критического уровня деполяризации, что и является причиной возникновения потенциала действия.
Многочисленными исследованиями было показано, что скорость проведения пропорциональна постоянной длины волокна l
и обратно пропорциональна постоянной времени мембраны
t
(Чайлохян Л.М., 1962). Поскольку в безмякотных нервных волокнах
l
пропорциональна квадратному корню из диаметра волокна
,
скорость проведения при прочих равных условиях также пропорциональна корню квадратному из диаметра волокна.
В миелинизированных нервных волокнах проведение происходит сальтаторно – от перехвата Ранвье к перехвату Ранвье. Длина межперехватного участка примерно пропорциональна диаметру волокна, поэтому скорость проведения в этих волокнах пропорциональна не корню квадратному из диаметра волокна, а просто его диаметру.
Принято считать, что скорость проведения зависит от величины так называемого фактора безопасности (гарантийности) Ф
, т.е. отношения амплитуды распространяющегося ПД к пороговому потенциалу. Пороговый потенциал – это та величина, на которую нужно изменить мембранный потенциал, чтобы достичь критического уровня деполяризации.
,
где Vs
– амплитуда ПД,
Vt
– пороговый потенциал.
При Ф = Vt
распространения возбуждения нет. Для аксона краба это отношение равно 7.
Было показано, что пороговый потенциал Vt
находится в тесной зависимости от чувствительности системы натриевой проницаемости мембраны к деполяризации. Чем выше эта чувствительность, т.е. чем на большую величину повышается
PNa
и, соответственно, натриевый входящий ток
INa
при данном сдвиге потенциала, тем ниже порог, и наоборот. Изменение состояния системы калиевой проницаемости на величину порогового потенциала практически не оказывает влияния. Точно так же очень мало влияет на пороговый потенциал проводимость токов «утечки». При постоянном потенциале покоя фактор безопасности должен возрастать при воздействиях на нервное волокно, которые повышают чувствительность натриевой системы к деполяризации, например, снижение концентрации ионов кальция в окружающей среде. Значительное снижение фактора безопасности вызывают агенты, усиливающие исходную инактивацию натриевой системы или уменьшающие натриевую проводимость, поскольку в этом случае амплитуда потенциала действия падает, а пороговый потенциал растет. Такие изменения проведения возбуждения наблюдал Тасаки (1957) и другие исследователи при воздействии на нервное волокно анестетиков и наркотиков в малых концентрациях, недостаточных для полного подавления потенциала действия.
Сложное влияние на фактор безопасности оказывает уровень потенциала покоя. Кратковременная подпороговая деполяризация мембраны, не изменяющая существенным образом критического потенциала и амплитуды потенциала действия, повышает фактор безопасности, так как Vt = Eo – Ek
. При сильной же деполяризации амплитуда спайка падает, критический потенциал растет, поэтому фактор безопасности уменьшается.
Наряду с фактором безопасности существенное влияние на скорость проведения возбуждения оказывает крутизна восходящей фазы распространяющегося потенциала действия. Крутизна этой фазы зависит как от пассивных, так и активных свойств мембраны.
Примерно 1/3 восходящей фазы распространяющегося ПД связана с пассивной деполяризацией мембраны нервного волокна током локальной цепи. Скорость же этой деполяризации при данной силе локального тока определяется постоянной времени мембраны t = RM CM
. Чем эта величина меньше, тем быстрее нарастает деполяризация и, следовательно, круче поднимается спайк. Инактивация натриевой системы, или снижение проницаемости для натрия (активные свойства мембраны), резко уменьшает крутизну восходящей фазы. Таким образом, при большинстве воздействий изменения скорости нарастания восходящей фазы ПД по своему направлению совпадают с изменениями фактора безопасности.
Согласно теории локальных токов, амплитуда распространяющегося потенциала действия Vs
, в отличие от мембранного спайка, зависит не только от ЭДС возбужденной мембраны
Е
, но и от соотношения входных сопротивлений возбужденного
R1
и невозбужденного (сопротивление нагрузки
R2
) участков волокна:
. (1)
Чем отношение выше, тем в большей мере амплитуда распространяющегося ПД приближается к величине Е
, тем, следовательно, выше фактор безопасности, и наоборот. Из чего вытекает, что снижение сопротивления мембраны (повышение ее ионной проводимости) при критической деполяризации не только ведет к возникновению спайка, но и способствует увеличению фактора безопасности, а значит, и скорости проведения.
Из формулы (1) ясно, что при проведении возбуждения по геометрически неоднородным возбудимым проводникам амплитуда распространяющегося спайка должна существенно зависеть от того, насколько близко находится возбужденный в данный момент участок волокна к месту его ветвления или расширения.
При расширении нервного волокна, например, в месте перехода его в тело клетки или в области ветвления аксона, суммарная площадь сечения волокон и общая площадь их мембраны увеличивается, а следовательно, R2
падает. Уменьшение
R2
снижает фактор безопасности и, соответственно, скорость проведения. При некоторых условиях уменьшение
R2
может привести к полному блокированию нервного импульса.
Расчеты показали, что потенциал действия легко проходит трехкратное расширение, с трудом пятикратное и полностью блокируется при шестикратном. Причиной развития блока является резкое снижение амплитуды распространяющегося ПД вблизи области расширения волокна.
Трофическая функция нервных волокон.Трофической функцией обладают афферентные и эфферентные волокна.
Афферентные нервы обладают двумя нейротрофическими, неимпульсными функциями. Можно различить прямое морфогенетическое и трофическое влияние на периферические органы и регуляторную функцию с обратной связью, зависящую, вероятно, от внутриаксональных центростремительных импульсов. Нейротрофическое морфогенетическое влияние доказано наличием: а) зависимости структуры вкусовых почек от вкусовых нервов; б) стимулирования регенерации конечности у амфибий чувствительными нервами посредством специфического, стимулирующего рост вещества немедиаторной природы; в) дифференцировки и поддержания рецепторов. После деафферентации в некоторых органах развиваются трофические нарушения. Первичный «трофический» нейрон для мышцы – это нейрон моторный. Нельзя забывать также, что во всех нервах проходят эфферентные адренергические волокна, вкоторых нейросекреты (катехоламины) транспортируются аксоплазматическим током к периферическим органам.
Аксональный транспорт.Описаны две системы аксонального транспорта – медленный, со скоростью 1-3 мм/день, и быстрый, со скоростью примерно 400 мм/день.
Аксональный транспорт поддерживает непрерывность аксона и синаптических мембран и восстанавливает белки, гликопротеины, ферменты и другие вещества, исчезающие в ходе локального расщепления, экзоцитоза в синаптическую щель и ретроградной миграции к нейрону. Все это происходит благодаря быстрому транспорту, на который не оказывают влияния процессы возбуждения. Транспорт продолжается после блокады потенциалов действия и не повышается при усиленной активности нерва. Аксональный транспорт осуществляется в обоих направлениях; центростремительный ток контролирует, по-видимому, синтез белков в нейроне и играет также роль «сигнала» для хроматолиза после аксотомии. Различные вещества, ферменты, передатчики и макромолекулы передвигаются в аксоне с разной скоростью.
Аксоплазматический транспорт можно зарегистрировать по накоплению веществ после нарушения непрерывности аксона и по наблюдению за продвижением меченых соединений после введения их в нейрон.
Белки, синтезируемые в теле клетки, синаптические медиаторные вещества и низкомолекулярные факторы спускаются по аксону к нервной терминали вместе с клеточными органеллами, в частности митохондриями. Для большинства веществ и органелл обнаружен ретроградный транспорт (по аксону к телу клетки): вирус полиомиелита, вирус герпеса, столбнячный токсин, а также ферменты – пероксидаза хрена, которая широко используется в нейроанатомии в качестве маркиратора. Ретроградный транспорт, видимо, является главным фактором регуляции синтеза белка в клетке. После перерезки аксона через несколько дней в соме начинается хроматолиз, что свидетельствует о нарушении синтеза белка. Быстрый аксонный транспорт зависит от достаточного снабжения метаболической энергии. Возможность транспорта создают микротрубочки диаметром 25 мкм, состоящие из белка тубулина, и некоторые нейрофибриллы, состоящие из белка актина, образующие транспортные нити. Транспортные нити скользят вдоль микротрубочек. При этом они взаимодействуют с выступами микротрубочек, происходит расщепление АТФ, которое и обеспечивает энергию для транспорта. Более медленно транспортируются крупные белки. Но считают, что сам транспортный механизм не является более медленным, однако вещества время от времени попадают в клеточные компартменты, которые не участвуют в транспорте. Медленный ток имеет, по-видимому, также отношение к аксональному росту. Аксоплазматический ток прекращается колхицином, что объясняется влиянием этого вещества на микротрубочки.
Физиология синапсов
Синапс (от греч. synapsis) обозначает соединение, связь – это специализированная зона контакта между нейронами или нейронами и другими возбудимыми образованиями, обеспечивающая передачу возбуждения с сохранением, изменением или исчезновением ее информационного значения. Данный термин был предложен Ч. Шеррингтоном (1897) для обозначения функционального контакта между нейронами. Справедливости ради нужно отметить, что еще в 60-х годах XIX столетия И.М. Сеченов подчеркивал, что вне межклеточной связи нельзя объяснить происхождение даже самых простых рефлексов.
Синапсы различают: 1) по их местоположению; 2) по способу передачи сигналов.
1) По местоположению выделяют синапсы центральные и периферические. Центральные синапсы – это синапсы, которые осуществляют контакт между нейронами в центральной нервной системе. К ним относятся аксо-аксональные синапсы, аксо-дендритические, аксо-соматические, дендро-дендритические (обнаружены гистологически; функциональное значение не вполне ясно). Центральные синапсы классифицируют также по знаку их действия – возбуждающие и тормозные. Кроме того, распространено деление синапсов по тому медиатору (передатчику), который осуществляет посредничество: адренергические синапсы, холинергические синапсы и др.
К периферическим синапсам относят нервно-мышечные, синапсы вегетативных ганглиев (синапсы, образованные преганглионарными и постганглионарными волокнами).
2) По способу передачи синапсы классифицируются как химические и электрические.
Для всех этих образований характерно наличие пресинаптической мембраны, синаптической щели (10-50 нм), постсинаптической мембраны. Пресинаптическая мембрана является мембраной пресинаптического окончания отростка нейрона (чаще всего аксона).
У человека и высших позвоночных животных наибольшее распространение получили химические синапсы. Химические синапсы в пресинаптическом окончании содержат везикулы с медиатором, химическим передатчиком. Ширина синаптической щели в среднем составляет 20 нм. На постсинаптической мембране содержатся рецепторы к данному медиатору, ферменты, разрушающие данный медиатор. Таким образом, постсинаптическая мембрана является рецепторной частью синапса, ею может быть специфически дифференцированный участок дендрита, тела нейрона и его аксона.
В электрическом синапсе не вырабатывается медиатор. Синаптическая щель несколько меньше, чем у химического синапса (2-4 нм). В синаптической щели между пре- и постсинаптической мембранами имеются белковые мостики-каналы шириной 1-2 нм, где движутся ионы и небольшие молекулы. Это способствует более низкому, чем у пресинаптической мембраны, сопротивлению постсинаптической мембраны. Поэтому возбуждение от пресинаптической мембраны к постсинаптической мембране в электрических синапсах передается электрическим путем, т.е. осуществляется эфаптическая передача. В отличие от химических синапсов, электрические синапсы отличаются большей скоростью проведения возбуждения, высокой надежностью передачи, возможностью двустороннего проведения.
Электрические синапсы обнаружены у крыс в вестибулярном ядре продолговатого мозга, в структурах дыхательного центра продолговатого мозга (при этом обсуждается их роль в механизмах автоматического ритмогенеза дыхания); у кошки электрические синапсы обнаружены между нейронами нижних олив, в структурах таламуса, между фоторецепторами сетчатки и горизонтальными клетками у рыб и др.
Но все-таки наибольшее распространение в процессе эволюции получили химические синапсы. Это обусловлено рядом свойств этих образований, которые имеют большое значение в организации деятельности нервной системы (рис. 1.4).
Рис. 1.4.
Синапс (рисунок взят из книги: Мозг / под ред. П.В. Симонова. М.: Мир, 1984)
⇐ Предыдущая3Следующая ⇒
Рекомендуемые страницы:
Функционирование нервной системы
Нормальное функционирование нервной системы зависит от передачи импульса и химических процессов в синапсе. Не менее важную роль играет создание нервных связей. Способность к обучению присутствует у людей именно благодаря возможности организма формировать новые соединения между нейронами.
Любое новое действие на стадии изучения требует постоянного контроля со стороны мозга. По мере его освоения образуются новые нейронные связи, со временем действие начинает выполняться автоматически (например, умение ходить).
Дендриты – это передающие волокна, составляющие примерно треть всей нервной ткани организма. Благодаря их взаимодействию с аксонами люди имеют возможность обучаться.
Axons are very thin nerve fibers that carry nerve impulses away from a neuron (nerve cell) to another neuron. A neuron is responsible for receiving sensory input, sending motor commands to your muscles, and transforming and relaying the electrical signals throughout these processes. Every neuron has one axon that connects it with other neurons or with muscle or gland cells.
Axons come in all lengths, with some spanning the entire length of your body from your spinal cord to your toes. Axons are generally thinner than a piece of human hair.
koto_feja / Getty Images
Structure
Every nerve has axons. The larger the diameter of the axon, the more quickly it can transmit messages. In the innermost part of the nerve are axons that can be typically found inside a myelin sheath.
Myelin is a fatty protective substance that acts as insulation for axons, helping to send signals over long distances. For this reason, myelin is mostly found in neurons that connect different brain regions, rather than in the neurons whose axons remain in the local region.
Function
Axons help with the cable transmission between neurons. They form side branches called axon collaterals so they can send messages to several neurons at once.
These branches split into smaller extensions known as axon terminal branches, or nerve terminals. Each terminal holds a synapse where neurotransmitters send their messages and where messages are received.
Simply put, axons allow nerve cells to send electrical and chemical messages to other nerve, gland, and muscle cells using this internal communication process.
Axon vs. Dendrite
Dendrite is another part of a neuron. It is where a neuron receives input from another cell. Axons and dendrites are both made of fibrous root-resembling materials, but they differ in several ways:
- Length: Axons are generally much longer than dendrites.
- Cell location: Axons are found at the specialized location on a cell body called the axon hillock. Dendrites are seen as branching away from the cell body into what’s called dendritic trees due to their appearance.
- Function: The two work together. Axons help messages move through your body systems, and dendrites receive and process those messages from the axons.
- Quantity: A neuron may have just one axon, while it may have more than one set of dendrites.
Types
A nerve contains bundles of nerve fibers, either axons or dendrites, surrounded by connective tissue. Different types of nerves contain different types of fibers.
Sensory Fibers
Sensory fibers pass impulses or messages from sensors to the brain and toward the central nervous system. These fibers are responsible for sensations like interpreting touch, pressure, temperature, and pain.
Motor Fibers
Motor fibers are behind why you tense your shoulders in response to a potential threat. They send messages to your muscles and glands in response to stimuli, including damage or physical traumas like accidents.
Damage
Acute axon damage is serious and life changing. Severe and diffuse axonal injuries can explain why people with head injury may be limited by a vegetative state. Axonal tears have been linked to lesions responsible for loss of consciousness in people who experience mild head injuries or concussions. Axon damage can result in axon degeneration (loss) and can eventually kill the underlying nerve.
What Causes Head Trauma?
Head trauma can occur from different types of injury, including:
- Physical impact from an event like a motor-vehicle accident or falling from a height
- Injury from an assault or sport injury hemorrhage, contusion, or hematoma
- Scattered brain bruising (contusion)
- Internal bleeding outside of the blood vessel (hematoma)
Axon loss is an early sign of neurodegenerative diseases like:
- Alzheimer’s disease and other memory disorders
- Huntington’s disease
- Parkinson’s disease
- Amyotrophic lateral sclerosis (ALS)
Demyelination
When the fatty myelin sheath begins to thin, a process known as demyelination, the axon’s ability to send signals may become impaired. Some disease states can cause this myelin breakdown.
While the sheath can technically repair itself, damage can be severe enough to kill the underlying nerve fiber. These nerve fibers in the central nervous system cannot fully regenerate.
A demyelinated axon transmits impulses up to 10 times slower than a normal myelinated axon, and a complete stop of the transmission is also possible.
Conditions that can cause demyelination include:
- Multiple sclerosis (MS): MS occurs when the immune system attacks myelin in the brain and spinal cord.
- Acute disseminated encephalomyelitis (ADEM): This is characterized by a brief but widespread attack of inflammation in the brain and spinal cord that damages myelin.
Frequently Asked Questions
What is the axon hillock?
In the nervous system, the axon hillock is a specialized location on a cell body (soma) where the neuron connects to an axon. It controls the firing of neurons.
What are axon terminals?
Axon terminals are located at the end of an axon. This is where messages from neurotransmitters are sent and received.
How does myelin “insulate” an axon?
Myelin insulates an axon by surrounding the thin fiber with a layer of fatty substance protection. This layer is located between the axon and its covering (the endoneurium).
Summary
An axon is a thin fiber that extends from a neuron, or nerve cell, and is responsible for transmitting electrical signals to help with sensory perception and movement. Each axon is surrounded by a myelin sheath, a fatty layer that insulates the axon and helps it transmit signals over long distances.
Verywell Health uses only high-quality sources, including peer-reviewed studies, to support the facts within our articles. Read our editorial process to learn more about how we fact-check and keep our content accurate, reliable, and trustworthy.
-
Du F, Cooper AJ, Thida T, Shinn AK, Cohen BM, Ongür D. Myelin and axon abnormalities in schizophrenia measured with magnetic resonance imaging techniques. Biol Psychiatry. 2013;74(6):451-457. doi:10.1016/j.biopsych.2013.03.003
-
The University of Queensland. Axons: the cable transmission of neurons.
-
National Cancer Institute. The peripheral nervous system.
-
Guedan-Duran A, Jemni-Damer N, Orueta-Zenarruzabeitia I, et al. Biomimetic approaches for separated regeneration of sensory and motor fibers in amputee people: necessary conditions for functional integration of sensory-motor prostheses with the peripheral nerves. Front Bioeng Biotechnol. 2020 Nov 3;8:584823. doi:10.3389/fbioe.2020.584823
-
Medana IM, Esiri MM. Axonal damage: a key predictor of outcome in human CNS diseases. Brain. 2003 Mar;126(Pt 3):515-530. doi:10.1093/brain/awg061
-
UCLA Health. Cerebral contusion and intracerebral hematoma.
-
Ding C, Hammarlund M. Mechanisms of injury-induced axon degeneration. Curr Opin Neurobiol. 2019 Aug;57:171-178. doi:10.1016/j.conb.2019.03.006
-
Adamczyk B, Adamczyk-Sowa M. New insights into the role of oxidative stress mechanisms in the pathophysiology and treatment of multiple sclerosis. Oxid Med Cell Longev. 2016 Oct 18;1973834. doi:10.1155/2016/1973834
-
Haines JD, Inglese M, Casaccia P. Axonal damage in multiple sclerosis. Mt Sinai J Med. 2011;78(2):231-243. doi:10.1002/msj.20246
By Michelle Pugle
Michelle Pugle, BA, MA, is an expert health writer with nearly a decade of contributing accurate and accessible health news and information to authority websites and print magazines. Her work focuses on lifestyle management, chronic illness, and mental health. Michelle is the author of Ana, Mia & Me: A Memoir From an Anorexic Teen Mind.
Thanks for your feedback!