Чем отличается нерв от аксона

Нервная система выполняет ряд важных функций:

  • обеспечивает связь организма с окружающим миром;
  • управляет работой всех органов; 
  • координирует функционирование всех систем органов, обеспечивая их согласованную работу.

Нервная ткань

Нервная ткань отличается от других тканей нашего организма тем, что обладает особыми свойствами — возбудимостью и проводимостью. Эти свойства нервной ткани обусловлены особенностями её строения.

В состав нервной ткани входят клетки двух видов. Основные функции выполняют нейроны, а клетки-спутники (клетки нейроглии) служат опорой и обеспечивают обмен веществ.

Нервная ткань_Nerve tissue_Nervu audi.png

Рис. (1). Нервная ткань

Функции нейронов: генерирование и передача нервных импульсов; обработка и хранение поступающей информации.

Нервный импульс — это волна возбуждения (биоэлектрическая волна), распространяющаяся по нервным клеткам.

Нейрон — основная клетка  нервной ткани. Он имеет тело и отростки двух типов. В теле нейрона располагается ядро и органоиды, а по отросткам передаются нервные импульсы.

Дендриты — это отростки, по которым нервные импульсы передаются к телу нейрона. Эти отростки сильно ветвятся. У нейрона может быть несколько дендритов.

Аксон — это отросток, по которому импульсы передаются от тела клетки. Аксон обычно ветвится только на конце. У каждого нейрона всего один аксон.

Нервная клетка.png

Рис. (2). Строение нейрона

Аксоны часто окружены оболочкой из жироподобного вещества миелина. Это вещество имеет белый цвет. Скопления миелинизированных аксонов образуют белое вещество головного и спинного мозга. Тела нервных клеток и дендриты не покрыты миелином. Они серого цвета, а их группы составляют серое вещество центральной нервной системы.

Передача нервных импульсов с одной клетки на другую происходит в синапсах.

Синапс — это место контакта между двумя нейронами или между нейроном и  клеткой рабочего органа.

Главными элементами синапса являются мембраны двух клеток (пресинаптическая и постсинаптическая мембраны) и пространство между ними (синаптическая щель).

Нервная клетка_2.png

Рис. (3). Строение синапса

В аксоне пресинаптического нейрона вырабатывается медиатор — особое вещество, с  помощью которого происходит передача нервного импульса.

Под действием нервного импульса медиатор выделяется в синаптическую щель. Рецепторы постсинаптической мембраны реагируют на его появление и генерируют возникновение нервного импульса в следующем нейроне. Так в синапсе происходит химическая передача возбуждения с одной клетки на другую.

Нейроны различаются по своему строению и выполняемым функциям.

Виды нейронов.png

Рис. (4). Виды нейронов

По выполняемым функциям выделяют три типа нейронов.

Чувствительные (сенсорные) нейроны проводят информацию от органов в мозг. Тела таких нейронов находятся в нервных узлах вне центральной нервной системы.

Другая группа нейронов передаёт информацию от головного и спинного мозга к органам. Это двигательные (моторные) нейроны. Их тела находятся в сером веществе центральной нервной системы, а аксоны находятся за пределами ЦНС.

Третий вид нейронов осуществляет связь между чувствительными и двигательными нейронами. Это вставочные нейроны, они находятся в головном и спинном мозге.

Скопление нейронов в головном или спинном мозге называют ядром.

Типы нейронов.png

Рис. (5). Типы нейронов и синапсы

Связь между органами и центральной нервной системой осуществляется через нервы.

Нерв — это орган, в состав которого входят пучки нервных волокон, покрытые соединительнотканной оболочкой.

Нерв.png

Рис. (6). Нерв

Нервы выполняют проводниковую функцию. Они связывают головной и спинной мозг с кожей, органами чувств и с внутренними органами.

Нервы бывают чувствительныедвигательные и смешанные.

Чувствительные нервы проводят нервные импульсы от рецепторов в мозг. В их состав входят дендриты чувствительных нейронов.

Двигательные нервы состоят из аксонов двигательных нейронов. Их функция — проведение импульсов от мозга к рабочим органам.  

Смешанные нервы образованы чувствительными и двигательными волокнами и способные проводить импульсы как к ЦНС, так и от ЦНС.

Нервные сплетения представлены сетчатыми скоплениями нервных волокон разных нервов, связывающих ЦНС с внутренними органами, скелетными мышцами и кожей.

Наиболее известное солнечное сплетение находится в брюшной полости.

Источники:

Рис. 1. Нервная ткань https://image.shutterstock.com/image-photo/mammalian-nervous-tissue-under-microscope-600w-74170234.jpg

Рис. 2. Строение нейрона  https://image.shutterstock.com/image-vector/education-chart-biology-nerve-cell-600w-661087429.jpg

Рис. 3. Строение синапса https://image.shutterstock.com/image-illustration/gap-between-two-nerve-cells-600w-1284912691.jpg

Рис. 4. Виды нейронов https://image.shutterstock.com/image-illustration/different-kinds-neurons-scheme-structure-600w-138356969.jpg

Рис. 5. Типы нейронов и синапсы  © ЯКласс

Рис. 6. Нерв https://image.shutterstock.com/image-illustration/nerve-structure-anatomy-600w-1041115012.jpg

Центральная нервная система, ее структура и функции. Контроль функций организма, обеспечение его взаимодействия с окружающей средой. Нейроны и их роль в получении и передаче информации, поддержании жизнедеятельности нашего организма. Мозг и способности.

Строение и значение нервной системы. Нервная система координирует деятельность клеток, тканей и органов нашего тела. Она регулирует функции организма и его взаимодействие с окружающей средой, обеспечивает возможности реализации психических процессов, которые лежат в основе механизмов языка и мышления, запоминания и обучения. Кроме того, у человека нервная система составляет материальную основу его психической деятельности.

Нервная система представляет собой сложный комплекс высокоспециализированных клеток, передающих импульсы от одной части тела к другой, в результате организм получает возможность реагировать как единое целое на изменения факторов внешней или внутренней среды.

Нервная система подразделяется на две части: центральную и периферическую.

 
   

В состав центральной нервной системы входят головной и спинной мозг, периферической – нервы, нервные узлы и нервные окончания.

Спинной мозг представляет собой продолговатый, цилиндрический тяж длиной до 45 см и массой 34-38 г, располагающийся в позвоночном столбе. Его верхняя граница расположена у основания черепа (верхние отделы переходят в головной мозг), а нижняя – у I-II поясничных позвонков. От спинного мозга симметрично отходят корешки спинномозговых нервов. В нем находятся центры некоторых простых рефлексов, например рефлексов, обеспечивающих движения диафрагмы, дыхательных мышц. Спинной мозг выполняет две функции: рефлекторную и проводящую, под контролем головного мозга регулирует работу внутренних органов (сердца, почек, органов пищеварения).

Основным структурным и функциональным элементом нервной системы являются нервные клетки – нейроны.

 
   

Совокупность нейронов и межклеточного вещества образует нервную ткань, со строением которой вы познакомились в разделе 1.5.1.

Знаете ли вы, что…
– нервная система состоит из 10…100 миллиардов нервных клеток;
– мозг потребляет около 10 Ватт энергии (эквивалентно мощности ночной лампы) и за 1 мин через него протекает 740-750 мл крови;
– нервные клетки генерируют примерно до тысячи импульсов в секунду…

Нервные клетки состоят из тела, отростков и нервных окончаний. От других типов специализированных клеток нейроны отличает наличие нескольких отростков, которые обеспечивают проведение нервного импульса по телу человека. Один из отростков клетки – аксон, как правило, длиннее остальных. Аксоны могут достигать в длину 1-1,5 м. Таковы, например, аксоны, образующие нервы конечностей. Аксоны заканчиваются несколькими тоненькими веточками – нервными окончаниями.

Нервные клетки различаются по строению, но все их типы объединяет главная черта: способность воспринимать раздражение, приходить в состояние возбуждения, вырабатывать импульс и передавать его.

 
   

В зависимости от функции нервные окончания подразделяются на чувствительные (афферентные), промежуточные (вставочные) и исполнительные (эфферентные) (смотри рисунок 1.5.22). Чувствительные нейроны (2) реагируют на воздействия внешней или внутренней среды и передают импульсы в центральные отделы нервной системы. Ими, как датчиками, пронизано все наше тело. Они постоянно как бы измеряют температуру, давление, состав и концентрацию компонентов среды и другие показатели. Если эти показатели отличаются от стандартных, чувствительные нейроны посылают импульсы в соответствующий отдел нервной системы. Промежуточные нейроны (3) передают этот импульс с одной клетки на другую. Посредством исполнительных нейронов (4) нервная система побуждает к действию клетки рабочих (исполнительных) органов. Таким действием становится соответствующее возникшей ситуации уменьшение или увеличение выработки клетками биологически активных веществ (секрета), расширение или сужение кровеносных сосудов, сокращение или расслабление мышц.

Нервные клетки в местах соединения друг с другом образуют особые контакты – синапсы (смотри рисунок 1.5.19). В пресинаптической части межнейронного контакта содержатся пузырьки с посредником (медиатором), которые высвобождают этот химический агент в синаптическую щель при прохождении импульса. Далее медиатор взаимодействует со специфическими рецепторами на постсинаптической мембране, в результате чего следующая нервная клетка приходит в состояние возбуждения, которое передается еще дальше по цепи. Так осуществляется передача нервного импульса в нервной системе. Подробнее о работе синапса мы рассказывали в предыдущем разделе. Роль медиатора выполняют различные биологически активные вещества: ацетилхолиннорадреналиндофаминглицингамма-аминомасляная кислота (ГАМК)глутаматсеротонин, и другие. Медиаторы центральной нервной системы называются еще нейромедиаторы.

В основе ответной реакции нервной системы на воздействие внешней среды или на изменение внутреннего состояния организма лежит рефлекс.

 
   

Благодаря рефлексу многие наши действия происходят автоматически. Действительно, нам некогда думать, когда мы прикасаемся к горячей плите. Если мы начнем рассуждать: “Мой палец на горячей плите, он обожжен, мне больно, надо бы убрать палец с плиты”, то ожог наступит гораздо раньше, чем мы предпримем какие-либо действия. Мы просто отдергиваем руку, не задумываясь и не успевая осознать, что же произошло. Это безусловный рефлекс и для такой ответной реакции достаточно соединения чувствительного и исполнительного нервов на уровне спинного мозга. Мы тысячи раз сталкиваемся с подобными ситуациями и просто не задумываемся об этом.

Рефлексы, которые осуществляются при участии головного мозга и формируются на основе нашего опыта, называют условными рефлексами. По принципу условного рефлекса мы действуем, когда управляем автомобилем или выполняем различные механические движения. Из условных рефлексов складывается значительная часть нашей повседневной деятельности.

Все наши действия происходят при участии и контроле со стороны центральной нервной системы. Точность выполнения команд контролирует головной мозг.

Строение и функции головного мозга. Мозг и способности.Человек издавна стремился проникнуть в тайну головного мозга, понять его роль и значение в жизни человека. Уже в глубокой древности связывали понятия сознание и мозг, но прошли еще многие сотни лет, прежде чем ученые начали разгадывать его загадки.

Головной мозг располагается в полости черепа и имеет сложную форму. Масса у взрослого человека колеблется от 1100 до 2000 г. Это всего около 2% от массы тела, но составляющие мозг клетки потребляют 25% энергии, вырабатываемой в организме! В возрасте от 20 до 60 лет масса и объем мозга остаются постоянными для каждого индивидуума. Если расправить извилины коры, то она займет площадь примерно 20 м2.

Мозг человека состоит из ствола, мозжечка и полушарий большого мозга. В стволе мозга находятся центры, регулирующие рефлекторную деятельность и связывающие организм с корой полушарий большого мозга. Кора полушарий толщиной 3-4 мм разделяется бороздами и извилинами, что значительно увеличивает поверхность мозга.

Участки коры полушарий большого мозга выполняют различные функции, поэтому они подразделяются на зоны. Например, в затылочной доле находится зрительная зона, в височной – слуховая и обонятельная. Их повреждение приводит к невозможности человеком различать запахи или звуки. С деятельностью головного мозга связаны сознание человека, мышление, память и другие психические процессы. Подробнее о работе головного мозга вы сможете узнать из следующей главы.

С тех пор, как люди убедились, что психические особенности человека связаны с мозгом, начались поиски таких связей. Некоторые специалисты считали что, масса вещества мозга в центрах, отвечающих за жадность, любовь, щедрость и прочие человеческие качества, должна быть пропорциональна их активности. Были попытки связать способности с массой мозга. Считалось, что чем она больше, тем человек способнее. Но и этот вывод ошибочен.

Так, например, масса мозга талантливых людей различна. Наряду с тяжелым мозгом И. Тургенева (2012 г!), масса мозга А. Франса составляла 1017 г. Однако трудно сказать, кто из них больше одарен, каждый из них занимал свое место в истории.

Что же такое способности, и какое отношение к ним имеет мозг? Способности – это психические возможности, позволяющие освоить ту или иную деятельность. Вполне понятно, что люди, занимающиеся разной деятельностью, должны иметь разные способности. Не случайно в коре головного мозга человека имеется множество нейронов, которые “ждут своего часа”, когда они будут задействованы. Таким образом, мозг человека способен решать не только стандартные задачи, но и осваивать новые программы.

Наш мозг – огромный мегаполис, дорожная инфраструктура которого напоминает связи и проводящие пути; по ним с огромной скоростью и частотой подобно спорткарам проносятся сигналы, а разные линии жилых районов имитируют различные уровни организации головного мозга. Здесь есть разделение труда, «неравноправие», доминирование, свои валюты и множество других вещей, которые так или иначе напоминают жизнь людей в крупном городе-миллионнике. Наша нервная система состоит из приблизительно 86 миллиардов нервных, и почти такого же количества (85 миллиардов глиальных клеток и от ста до пятисот триллионов синапсов (соединений). При этом она чрезвычайно разнолика и имеет в своём арсенале около сотни клеточных типов, которые способны строить тысячи связей между собой и создавать настоящие клеточные ансамбли.

В таком разнообразии очень легко запутаться, поэтому сегодня мы с вами разберём, что же именно отличает нервную ткань от других, какие клеточные варианты имеются в её составе, чем уникален нейрон и почему именно у нервной системы получается делать нас мыслящими.

Начнём с «внутренностей» нейрона

Как и любая нормальная клетка, он имеет ядро, цитоплазму и клеточную мембрану, которая обособляет его от внешней среды. Однако, это не всё. Нейрон – одна из немногих клеток, которая способна к генерации нервного импульса. О нём мы с вами поговорим в следующих выпусках, а сейчас стоит отметить лишь то, что такая возбудимость позволяет мозгу обрабатывать информацию, а нам — существовать.

У нейрона есть несколько характерных составных элементов, увидев которые вы никогда не спутаете его с другими клетками: это аксон— длинный отросток, по которому сигналы идут от перикариона, или тела, и дендриты – короткие отростки, по которым информация движется к нейрону от его соседей. 

Аксон, главный «кабель», покрыт «изоляцией», миелиновой оболочкой. Миелиновая оболочка аксонов есть только у позвоночных, а поскольку у нас явно есть позвоночник, то… Эту оболочку образуют «накручивающиеся» на аксон специальные шванновские клетки (в центральной нервной системе — олигодендроциты, несколько другой тип клеток, нежели шванновские), между которыми остаются свободные от миелиновой оболочки участки — перехваты Ранвье.

Перикарион имеет в своём составе обычные для живых эукариотических (ядерных) клеток субъединицы: собственно ядро, гранулярную эндоплазматическую сеть (ЭПС), которая синтезирует белки и прочие нужные клетке вещества и окрашивается при специальной окраске в тёмный цвет, которым покрываются глыбки тигроида или субстанции Ниссля, которые можно разглядеть даже в световой микроскоп. 

Также здесь есть аппарат Гольджи или «накопительный резервуар», митохондрии — «энергетические станции», лизосомы с «пищеварительными» ферментами, рибосомы, благодаря которым происходит синтез белков, а также целая сеть внутреннего цитоскелета, в которую входят микротрубочки, особые частицы — MAP (протеины, ассоциированные с микротрубочками), а также нейрофиламенты (типа промежуточных нитей). Благодаря этому скелету в клетке протекает очень важный для неё перенос веществ от центра к периферии, что особенно актуально для длинного (порой до нескольких десятков сантиметров) аксона, который питается также от тела. Такой ток бывает аксональным быстрым (до 100-1000 мм/сутки) и медленным (1-3 мм/сутки), дендритическим (75 мм/сутки), а также движущимся в обратном направлении — ретроградным.

А теперь представим, что перед нами микроскоп, а на предметном столике – покрашенный одним из специфических способов (по Нисслю или импрегнацией серебром) срез мозга. Как определить, где в переплетении отростков аксоны, а где – дендриты? Посмотреть нужно на тигроид, о котором мы упоминали. Дело в том, что он в виде гранул «рассыпан» по всему телу и коротким отросткам, но никогда вы его не найдёте в отростке длинном. А заканчивается он в районе аксонального холмика – структуры, близкой к началу аксона, в которой начинается генерация импульса.

Нейрон снаружи

Теперь, когда мы разобрались, что внутри у нервных клеток, посмотрим на их внешнюю организацию и попробуем разобраться в функциональном разделении.

Вспомните, что мы говорили про один длинный аксон и короткие дендриты. Так вот, этот вид нейронов называется мультиполярным, и он — самый «популярный», однако, есть и другие: униполярные (всего один отросток), биполярные (два отростка) и псевдоуниполярные (один отросток, который потом делится на два). Есть и вовсе аполярные(«голые») нейроны. Это предшественники нервных клеток – нейробласты.

Интересно, что униполярные нейроны представлены у человека всего лишь в одном виде: амакриновыми клетками сетчатки глаза. Псевдоуниполярные встречаются гораздо чаще и составляют основную массу спинномозговых чувствительных узлов, о которых мы поговорим чуть позже. Биполярных тоже не так много, и их пул, главным образом, приходится на обонятельные рецепторные клетки. Ну а с мультиполярными и так всё понятно – это универсальные представители нервной системы (например, мотонейроны спинного мозга).

Но, при всей своей важности, строение – это всё же не функции. Каждый нейрон, представляя собой возбуждаемую и возбуждающую клетку (не путать с некими другими физиологическими процессами!), должен своим «настроением» делиться с соседями, иначе сигнал не дойдёт до адресата и не будет обработан и выполнен, что никого, конечно, не устраивает. Поэтому, подобно водителям, въезжающим на платную скоростную трассу, нейроны должны «заплатить», чтобы передать импульс дальше. 

Эта «валюта» существует в двух формах: электрической и химической. Второй случай — более частый. А контрольно-пропускные пункты с кассами на автомагистралях воплощаются в синапсах — местах передачи возбуждения с клетки на клетку, то есть местах соединения нейронов. Такие места образуются на специальных выростах на дендритах: дендритных шипиках. Они чаще всего бывают трёх видов: пеньковые, грибовидные и тонкие шипики. Но бывают и другие.


Дендритный шипик — с его шейкой и головкой

Тонкий, грибовидный и пеньковый шипики.

Какие же бывают синапсы?

Реже бывает так. Благодаря ионным каналам в мембране и плотным контактам клеток электрический сигнал без особых усилий перескакивает с нейрона на нейрон и «летит» дальше — пробок нет, оплата принята, водитель доволен. Но это — электрический синапс, или, как еще умничают нейробиологи, эфапс.


Электрические синапсы (эфапсы). а — коннексон (двойная пора) в закрытом состоянии; b — коннексон в открытом состоянии; с — коннексон, встроенный в мембрану; d — мономер коннексина (белка, из которого сделаны коннексоны), е — плазматическая мембрана; f — межклеточное пространство; g — промежуток в 2-4 нанометра в электрическом синапсе; h — гидрофильный канал коннексона.

Но намного чаще случаются ситуации, когда синапс имеет достаточно широкую щель – порядка десятков микрон. То есть перед водителем река, а переправляться придётся на пароме. Здесь вступает в силу химическая «валюта» в виде нейромедиатора, который накапливается в везикулах (пузырьках) пресинаптической мембраны, затем вырабатывается в эквивалентоном силе пришедшего импульса количестве, «переплывает» щель и принимается рецепторами на другом берегу – постсинаптической мебране. 

Вот он, универсальный язык нервной системы, а нейроны по типу нейромедиаторов делятся на холинергические, адренергические, ГАМК-ергические и некоторые другие (об этом читайте в следующих выпусках). Исходя из этого, действие, в зависимости от типа нейромедиатора, бывает либо возбуждающим, либо тормозным.

Химический синапс.

Но и это ещё не всё! Есть нейроны чувствительные, которые воспринимают сигнал из внешней или внутренней среды, затем следующие за ними в центральную нервную систему — вставочные, которые обеспечивают ассоциацию в нейронных сетях и могут быть в единичном или множественном числе, и двигательные, которые завершают сигнал действием и иннервируют сократительные или секреторные элементы. Также их ещё можно назвать афферентными (восходящими, двигающимися к центру), интернейронами и эфферентыми (нисходящими, двигающимися к периферии).

«Серый кардинал» нервной системы

Мы поговорили о нейронах, но нельзя забывать и о другой, не менее важной части нервной системы – нейроглии, тем более, что она составляет половину объёма головного мозга и принимает чуть ли не основное участие (как выяснилось в последние годы) в регуляции синаптической передачи, усиливая либо ослабляя сигнал.

Так вот, вся глия по строению, функциям и расположению делится на эпендимную(выстилающую внутреннее пространство цереброспинального канала и желудочков мозга), макро— и микроглию.

Макроглия, в свою очередь, имеет в своём распоряжении целый веер различных подтипов и для центральной, и для периферической нервной системы. Так, в головном мозге она представлена астроцитами, название которых говорит само за себя (большие звёздчатые клетки с большим количеством отростков, которые оплетают нейроны и сосуды), а также олигодендроцитами, которые обеспечивают внутримозговые волокна миелином (по сути, наматываются отростками на аксон — мы уже упомянули о них), многократно увеличивающим скорость передачи импульса. 

Периферическая нервная система в основном обходится лишь шванновскими клетками, которые также миелинизируют волокна, но уже за пределами центра, и расходятся по всему организму. И ещё сюда добавляются так называемые мантийные глиоциты или сателлиты, которые образуют оболочку (мантию) вокруг тел нейронов в ганглиях (узлах). Микроглия представляет из себя собственную фагоцитарную систему головного мозга и активируется в основном тогда, когда в нём появляются патологические процессы.

Астроцит.

Но нужно всё-таки подчеркнуть важность глии. Работы по её изучению ведутся не так много лет – буквально два последних десятилетия. Появилась такая рабочая гипотеза (автор — Филип Хейдон [Philip G. Haydon]), согласно которой астроциты, обмениваясь сигналами, активируют нейроны, чьи аксоны находятся от них не только на близком расстоянии, но и сравнительно далеко. Эта активация в итоге способствует высвобождению нейромедиаторов. Таким образом, астроциты регулируют готовность даже отдалённых синапсов к изменению своей эффективности, что представляет собой клеточную основу процессов памяти и обучения.

Сотрудники из лаборатории Бена Барреса (Ben A. Barres, Стэнфордский университет) пошли дальше и открыли специфический белок тромбоспондин астроцитарного происхождения, который стимулирует образование синапсов. Сравнение же головного мозга показывает, что чем более высокое положение занимают животные на «эволюционной лестнице», тем больше в их мозге глиальных клеток по отношению к нервным. Так вот, возможно, что увеличение связности астроцитов может даже повышать способность животных к обучению. Однако это ещё только предстоит доказать.

На острие чувств

В завершение нашего небольшого путешествия внутрь нервной системы разберёмся в том, откуда берутся наши ощущения. Оказывается, здесь строение нервного окончания также имеет самое непосредственное отношение к процессу. Нервные окончания могут располагаться в тканях свободно, могут оканчиваться специальными сенсорными рецепторами, а могут «заключаться» в соединительнотканную капсулу.

Тактильные «граждане» располагаются в слоях соединительной ткани внутренних органов и кожи. Большинство из них – механорецепторы (тактильные, пластинчатые тельца), которые реагируют на какие-либо механические воздействия.

Например, тельца Руффини реагируют на растяжение кожи, тельца Пачини – на давление. Некоторые окончания в эпидермисе «заточены» под регистрацию изменений температуры (тепло – тельца Руффини, холод – колбы Краузе). Есть даже такие рецепторы, которые могут определять изменения рН, рО2 и рСО2.


Поперечное сечение телец Руффини.
Для суставов и мышц есть свои детекторы чувств. К ним относятся мышечные веретёна, сухожильные органы и чувствительные нервные окончания в капсуле суставов.
Источник: портал «Нейроновости»

В теле человека бессчетное количество клеток, каждая из которых имеет собственную функцию. Среди них самые загадочные – нейроны, отвечающие за любое совершаемое нами действие. Попробуем разобраться как работают нейроны и в чем их предназначение.

Что такое нейрон (нейронные связи)

В переводе с греческого нейрон, или как его еще называют неврон, означает «волокно», «нерв». Нейрон – это специфическая структура в нашем организме, которая отвечает за передачу внутри него любой информации, в быту называемая нервной клеткой.

Нейроны работают при помощи электрических сигналов и способствуют обработке мозгом поступающей информации для дальнейшей координации производимых телом действий.

Эти клетки являются составляющей частью нервной системы человека, предназначение которой состоит в том, чтобы собрать все сигналы, поступающие из вне или от собственного организма и принять решение о необходимости того или иного действия. Именно нейроны помогают справиться с такой задачей.

Каждый из нейронов имеет связь с огромным количеством таких же клеток, создаётся своеобразная «паутина», которая называется нейронной сетью. Посредством данной связи в организме передаются электрические и химические импульсы, приводящие всю нервную систему в состояние покоя либо, наоборот, возбуждения.

К примеру, человек столкнулся с неким значимым событием. Возникает электрохимический толчок (импульс) нейронов, приводящий к возбуждению неровной системы. У человека начинает чаще биться сердце, потеют руки или возникают другие физиологические реакции.

Мы рождаемся с заданным количеством нейронов, но связи между ними еще не сформированы. Нейронная сеть строится постепенно в результате поступающих из вне импульсов. Новые толчки формируют новые нейронные пути, именно по ним в течение жизни побежит аналогичная информация. Мозг воспринимает индивидуальный опыт каждого человека и реагирует на него. К примеру, ребенок, схватился за горячий утюг и отдернул руку. Так у него появилась новая нейронная связь.

Стабильная нейронная сеть выстраивается у ребенка уже к двум годам. Удивительно, но уже с этого возраста те клетки, которые не используются, начинают ослабевать. Но это никак не мешает развитию интеллекта. Наоборот, ребенок познает мир через уже устоявшиеся нейронные связи, а не анализирует бесцельно все вокруг.

Даже у такого малыша есть практический опыт, позволяющий отсекать ненужные действия и стремиться к полезным. Поэтому, например, так сложно отучить ребенка от груди — у него сформировалась крепкая нейронная связь между приложением к материнскому молоку и удовольствию, безопасности, спокойствию.

Познание нового опыта на протяжении всей жизни приводит к отмиранию ненужных нейронных связей и формированию новых и полезных. Этот процесс оптимизирует головной мозг наиболее эффективным для нас образом. Например, люди, проживающие в жарких странах, учатся жить в определенном климате, а северянам нужен совсем другой опыт для выживания.

Сколько нейронов в мозге

Нервные клетки в составе головного мозга занимают порядка 10 процентов, остальные 90 процентов это астроциты и глиальные клетки, но их задача заключается лишь в обслуживании нейронов.

Подсчитать «вручную» численность клеток в головном мозге также сложно, как узнать количество звезд на небе.

Тем не менее ученые придумали сразу несколько способов для определения количества нейронов у человека:

  • Рассчитывается число нервных клеток на небольшой части мозга, а затем, количество умножается пропорционально полному объему. Исследователи исходят из постулата о том, что нейроны равномерно распределены в нашем мозге.
  • Происходит растворение всех мозговых клеток. В результате получается жидкость, в составе которой можно увидеть клеточные ядра. Их можно посчитать. При этом служебные клетки, о которых мы сказали выше, не учитываются.

В результате описанных экспериментов установлено, что число нейронов в головном мозге человека — 85 миллиардов единиц. Ранее, на протяжении многих веков считалось, что нервных клеток больше, порядка 100 миллиардов.

Строение нейрона

На рисунке приведено строение нейрона. Он состоит из основного тела и ядра. От клеточного тела идет ответвление многочисленных волокон, которые именуются дендритами.

Строение

Мощные и длинные дендриты называются аксонами, которые в действительности намного длиннее, чем на картинке. Их протяженность варьируется от нескольких миллиметров до более метра.

Аксоны играют ведущую роль в передаче информации между нейронами и обеспечивают работу всей нервной системы.

Место соединения дендрита (аксона) с другим нейроном называется синапсом. Дендриты при наличии раздражителей могут разрастись настолько сильно, что станут улавливать импульсы от других клеток, что приводит к образованию новых синаптических связей.

Синаптические связи играют существенную роль в формировании личности человека. Так, личность с устоявшимся позитивным опытом будет смотреть на жизнь с любовью и надеждой, человек, у которого нейронные связи с негативным зарядом, станет со временем пессимистом.

Виды нейронов и нейронных связей

Нейроны можно обнаружить в различных органах человека, а не исключительно в головном мозге. Большое их количество расположено в рецепторах (глаза, уши, язык, пальцы рук – органы чувств). Совокупность нервных клеток, которые пронизывают наш организм составляет основу периферической нервной системы. Выделим основные виды нейронов.

Вид нейронной клетки За что отвечает
Аффекторные Являются переносчиками информации от органов чувств в головной мозг. У этого вида нейронов самые длинные аксоны. Импульс из вне поступает по аксонам строго в определенный участок головного мозга, звук — в слуховой «отсек», запах – в «обонятельный» и т.д.
Промежуточные Промежуточные нервные клетки обрабатывают сведения, поступившие от аффекторных нейронов и передают ее периферическим органам и мышцам.
Эффекторные На заключительном этапе в дело вступают эфференты, которые доводят команду промежуточных нейронов до мышц и других органов тела.

Слаженная работа нейронов трех типов выглядит так: человек «слышит» запах шашлыка, нейрон передает информацию в соответствующий раздел мозга, мозг передает сигнал желудку, который выделяет желудочный сок, человек принимает решение «хочу есть» и бежит покупать шашлык. Упрощенно так это действует.

Самыми загадочными являются промежуточные нейроны. С одной стороны, их работа обуславливает наличие рефлекса: дотронулся до электричества – отдернул руку, полетела пыль –зажмурился. Однако, пока не объяснимо как обмен между волокнами рождает идеи, образы, мысли?

Единственное, что установили ученые, это тот факт, что любой вид мыслительной деятельности (чтение книг, рисование, решение математических задач) сопровождается особой активностью (вспышкой) нервных клеток определенного участка головного мозга.

Есть особая разновидность нейронов, которые именуются зеркальными. Их особенность заключается в том, что они не только приходят в возбуждение от внешних сигналов, но и начинают «шевелиться», наблюдая за действиями своих собратьев – других нейронов.

Функции нейронов

Без нейронов невозможна работа организма человека. Мы увидели, что эти наноклетки отвечают буквально за каждое наше движение, любой поступок. Выполняемые ими функции до настоящего времени в полной мере не изучены и не определены.

Существует несколько классификаций функций нейронов. Мы остановимся на общепринятой в научном мире.

Функция распространения информации

Данная функция:

  • является основной;
  • изучена лучше остальных.

Суть ее в том, что нейронами обрабатываются и переносятся в головной мозг все импульсы, которые поступают из окружающего мира или собственного тела. Далее происходит их обработка, подобно тому, как работает поисковик в браузере.

По результатам сканирования сведений из вне, головной мозг в форме обратной связи передает обработанную информацию к органам чувств или мышцам.

Мы не подозреваем, что в нашем теле происходит ежесекундная доставка и переработка информации, не только в голове и на уровне периферической нервной системы.

До настоящего времени создать искусственный интеллект, который бы приблизился к работе нейронных сетей человека, не удалось. У каждого из 85 миллиардов нейронов имеется, как минимум, 10 тысяч обусловленных опытом связей, и все они работают на передачу и обработку информации.

Функция аккумуляции знаний (сохранения опыта)

Человек обладает памятью, возможностью понимать суть вещей, явлений и действий, которые он единожды или многократно повторял. За формирование памяти отвечают именно нейронные клетки, точнее нейротрансмиттеры, связующие звенья между соседними нейронами.

Таким образом, за память отвечает не какая-то отдельная часть мозга, а маленькие белковые мостики между клетками. Человек может потерять память, когда произошло крушение этих нервных связей.

Функция интеграции

Данная функция позволяет взаимодействовать между собой отдельным долям головного мозга. Как мы уже сказали, сигналы от разных органов чувств поступают в разные отделы мозга.

Нейроны посредством «вспышек» активности передают и принимают импульсы в разных частях мозга. Так происходит процесс появления мыслей, эмоций и чувств. Чем больше таких разноплановых связей, тем эффективнее человек мыслит. Если человек способен к размышлениям и аналитике в определенном направлении, то он будет хорошо соображать и в другом вопросе.

Функция производства белков

Нейроны – настолько полезные клетки, что не ограничиваются только передаточными функциями. Нервные клетки вырабатывают необходимые для жизни человека белки. Опять же ключевую роль в производстве белков имеют нейротрансмиттеры, которые отвечают за память.

Всего в невронах индуцируется порядка 80 белков, вот основные из них, влияющие на самочувствие человека:

  • Серотонин – вещество, вызывающее радость и удовольствие.
  • Допамин – ведущий источник бодрости и счастья для человека. Активизирует физическую активность, помогает проснуться, переизбыток может привести к состоянию эйфории.
  • Норадреналин – это «плохой» гормон, вызывающий приступы ярости и гнева. Наряду с кортизолом его называют гормоном стресса.
  • Глутамат – вещество, отвечающие за хранение памяти.

Прекращение выработки белков или их выпуск в недостаточном количестве способны привести к тяжелым заболеваниям.

Восстанавливаются ли нервные клетки

При нормальном состоянии организма нейроны могут жить и функционировать очень долго. К сожалению, случается так, что они начинают массово погибать. Причин разрушения нервных волокон может быть много, но до конца механизм их деструкции не изучен.

Установлено, что нервные клетки погибают из-за гипоксии (кислородное голодание). Нейронные сети рушатся при отдельных травмах головного мозга, человек теряет память или утрачивает способность к хранению информации. В этом случае сами нейроны сохранены, но теряется их передаточная функция.

Отсутствие допамина ведет к развитию болезни Паркинсона, а его переизбыток является причиной шизофрении. Почему прекращается выработка белка не известно, спусковой механизм не выявлен.

Гибель нервных клеток происходит при алкоголизации личности. Алкоголик со временем может совершенно деградировать и утратить вкус к жизни.

Формирование нервных клеток происходит при рождении. Долгое время ученые полагали, что со временем нейроны отмирают. Поэтому с возрастом человек утрачивает способность накапливать информацию, хуже соображает. Нарушение функции по выработке допамина и серотонина связывается с наличием практически у всех пожилых людей депрессивных состояний.

Гибель нейронов, действительно неизбежна, в год исчезает примерно 1 процент от их количества. Но есть и хорошие новости. Последние исследования показали, что в коре головного мозга есть особенный участок, именуемый гипокаммом. Именно в нем генерируются новые чистые нейроны. Подсчитано примерное количество генерируемых ежедневно нервных клеток – 1400.

В науке обозначилось новое понятие «нейропластичность», обозначающее возможность мозга регенерироваться и перестраиваться. Но есть одна тонкость: новые нейроны еще не имеют никакого опыта и наработанных связей. Поэтому с возрастом или после заболевания мозг нужно тренировать, как и все иные мышцы тела: получать новые знания, анализировать происходящие события и явления.

Подобно тому, как мы усиливаем бицепс при помощи гантели, активизировать процесс включения новых нервных клеток можно следующими способами:

  • изучение новых сфер знаний, которые ранее были не нужны или не интересны. К примеру, математику можно начать изучать живопись, а юристу – основы физики.
  • через постановку сложных задач и поиск их решения;
  • составлением планов деятельности, которые включают в себя множество исходных данных.

Механизм возрождения прост. У нас имеются совершенно не задействованные новые клетки, которые нужно заставить работать, а сделать это можно лишь путем постановки новых задач и изучения неизвестных предметных сфер.

  Вся информация взята из открытых источников.

Если вы считаете, что ваши авторские права нарушены, пожалуйста,
напишите в чате на этом сайте, приложив скан документа подтверждающего ваше право.
Мы убедимся в этом и сразу снимем публикацию.

Понравилась статья? Поделить с друзьями:
  • Чем отличается аксон от дендрита по строению и функции
  • Чердачная лестница касторама воронеж
  • Чем отличается аксон от дендрита ответ
  • Чердачная лестница в леруа мерлен челябинск
  • Чердачная лестница в леруа мерлен нижний новгород