Что короче дендрит или аксон

Обновлено: 06.04.2023

Морфологические отличия дендритов от аксонов
1. У отдельного нейрона имеется несколько дендритов, аксон всегда один.

2. Дендриты всегда короче аксона. Если размеры дендритов не превышают 1,5-2 мм, то аксоны могут достигать 1м и более.

3. Дендриты плавно отходят от тела клетки и постепенно истончаются. Аксон, резко отходя от сомы нейрона, сохраняет постоянный диаметр на значительном протяжении.

4. Дендриты ветвятся обычно под острым углом, и ветви направлены от клетки. Аксоны отдают коллатерали чаще всего под прямым углом, ориентация коллатералей не связана непосредственно с положением клеточного тела.

5. Рисунок дендритического ветвления у клеток одного типа более постоянен, чем разветвления аксона этих клеток.

6. Дендриты зрелых нейронов бывают покрыты дендритическими шипиками, которые отсутствуют на соме и начальной части дендритных стволов. Аксоны не имеют шипиков.

7. Дендриты никогда не имеют мякотной оболочки. Аксоны часто окружены миелином.

8. Дендриты имеют более регулярную пространственную организацию микротрубочек, в аксонах в основном преобладают нейрофиламенты и микротрубочки расположены менее упорядочение

9. В дендритах, в особенности в их проксимальных участках, имеются эндоплазматический ретикулум и рибосомы, чего нет в аксонах.

10. Поверхность дендритов в большинстве случаев контактирует с синоптическими бляшками и имеет активные зоны с постсинаптической специализацией.

у аксонов короткие отростки и ветвятся сильнее, у дендритов — длинные, до 1м и менее разветвленные, они образуют нервы

Морфологические отличия дендритов от аксонов
1. У отдельного нейрона имеется несколько дендритов, аксон всегда один.

2. Дендриты всегда короче аксона. Если размеры дендритов не превышают 1,5-2 мм, то аксоны могут достигать 1м и более.

3. Дендриты плавно отходят от тела клетки и постепенно истончаются. Аксон, резко отходя от сомы нейрона, сохраняет постоянный диаметр на значительном протяжении.

4. Дендриты ветвятся обычно под острым углом, и ветви направлены от клетки. Аксоны отдают коллатерали чаще всего под прямым углом, ориентация коллатералей не связана непосредственно с положением клеточного тела.

5. Рисунок дендритического ветвления у клеток одного типа более постоянен, чем разветвления аксона этих клеток.

6. Дендриты зрелых нейронов бывают покрыты дендритическими шипиками, которые отсутствуют на соме и начальной части дендритных стволов. Аксоны не имеют шипиков.

7. Дендриты никогда не имеют мякотной оболочки. Аксоны часто окружены миелином.

8. Дендриты имеют более регулярную пространственную организацию микротрубочек, в аксонах в основном преобладают нейрофиламенты и микротрубочки расположены менее упорядочение

9. В дендритах, в особенности в их проксимальных участках, имеются эндоплазматический ретикулум и рибосомы, чего нет в аксонах.

10. Поверхность дендритов в большинстве случаев контактирует с синоптическими бляшками и имеет активные зоны с постсинаптической специализацией.

у аксонов короткие отростки и ветвятся сильнее, у дендритов — длинные, до 1м и менее разветвленные, они образуют нервы

Нервная ткань отличается от других тканей нашего организма тем, что обладает особыми свойствами — возбудимостью и проводимостью . Эти свойства нервной ткани обусловлены особенностями её строения.

В состав нервной ткани входят клетки двух видов. Основные функции выполняют нейроны, а клетки-спутники (клетки нейроглии) служат опорой и обеспечивают обмен веществ.

Нервная ткань_Nerve tissue_Nervu audi.jpg

Функции нейронов: генерирование и передача нервных импульсов; обработка и хранение поступающей информации.

Нервный импульс — это волна возбуждения (биоэлектрическая волна), распространяющаяся по нервным клеткам.

Нейрон — основная клетка нервной ткани. Он имеет тело и отростки двух типов. В теле нейрона располагается ядро и органоиды, а по отросткам передаются нервные импульсы.

Дендриты — это отростки, по которым нервные импульсы передаются к телу нейрона. Эти отростки сильно ветвятся. У нейрона может быть несколько дендритов.

Аксон — это отросток, по которому импульсы передаются от тела клетки. Аксон обычно ветвится только на конце. У каждого нейрона всего один аксон.

Нервная клетка.jpg

Аксоны часто окружены оболочкой из жироподобного вещества миелина. Это вещество имеет белый цвет. Скопления миелинизированных аксонов образуют белое вещество головного и спинного мозга. Тела нервных клеток и дендриты не покрыты миелином. Они серого цвета, а их группы составляют серое вещество центральной нервной системы.

Главными элементами синапса являются мембраны двух клеток (пресинаптическая и постсинаптическая мембраны) и пространство между ними (синаптическая щель).

Нервная клетка_2.jpg

В аксоне пресинаптического нейрона вырабатывается медиатор — особое вещество, с помощью которого происходит передача нервного импульса.

Под действием нервного импульса медиатор выделяется в синаптическую щель. Рецепторы постсинаптической мембраны реагируют на его появление и генерируют возникновение нервного импульса в следующем нейроне. Так в синапсе происходит химическая передача возбуждения с одной клетки на другую.

Виды нейронов.jpg

Чувствительные ( сенсорные ) нейроны проводят информацию от органов в мозг. Тела таких нейронов находятся в нервных узлах вне центральной нервной системы.

Другая группа нейронов передаёт информацию от головного и спинного мозга к органам. Это двигательные ( моторные ) нейроны. Их тела находятся в сером веществе центральной нервной системы, а аксоны находятся за пределами ЦНС.

Третий вид нейронов осуществляет связь между чувствительными и двигательными нейронами. Это вставочные нейроны, они находятся в головном и спинном мозге.

Типы нейронов.jpg

Нерв — это орган, в состав которого входят пучки нервных волокон, покрытые соединительнотканной оболочкой.

Нерв.jpg

Нервы выполняют проводниковую функцию. Они связывают головной и спинной мозг с кожей, органами чувств и с внутренними органами.

Чувствительные нервы проводят нервные импульсы от рецепторов в мозг. В их состав входят дендриты чувствительных нейронов.

Двигательные нервы состоят из аксонов двигательных нейронов. Их функция — проведение импульсов от мозга к рабочим органам.

Смешанные нервы образованы чувствительными и двигательными волокнами и способные проводить импульсы как к ЦНС, так и от ЦНС.

Нервные сплетения представлены сетчатыми скоплениями нервных волокон разных нервов, связывающих ЦНС с внутренними органами, скелетными мышцами и кожей.

Нервная система состоит из нейронов (специфических клеток, имеющих отростки) и нейроглии (она заполняет пространство между нервными клетками в ЦНС). Главное отличие между ними заключается в направлении передачи нервного импульса. Дендриты – это принимающие ответвления, по ним сигнал идет к телу нейрона. Передающие клетки – аксоны – проводят сигнал от сомы к принимающим. Это могут быть не только отростки нейрона, но и мышцы.

дендриты это

Виды нейронов

Нейроны бывают трех видов: чувствительные – воспринимающие сигнал из организма или внешней среды, моторные – передающие импульс к органам, и вставочные, которые соединяют между собой два других типа.

Нервные клетки могут отличаться по размеру, форме, ветвлению и количеству отростков, длине аксона. Результаты исследований показали, что ветвление дендритов больше и сложнее у организмов, стоящих выше на ступенях эволюции.

Отличия аксонов и дендритов

Какова же разница между ними? Рассмотрим.

  1. Дендрит нейрона короче передающего отростка.
  2. Аксон всего один, принимающих ответвлений может быть много.
  3. Дендриты сильно ветвятся, а передающие отростки начинают разделяться ближе к концу, образуя синапс.
  4. Дендриты истончаются по мере удаления от тела нейрона, толщина аксонов практически неизменна по всей длине.
  5. Аксоны покрыты миелиновой оболочкой, состоящей из липидных и белковых клеток. Она выполняет роль изолятора и защищает отросток.

Поскольку нервный сигнал передается в виде электрического импульса, клеткам необходима изоляция. Её функции выполняет миелиновая оболочка. Она имеет мельчайшие разрывы, способствующие более быстрой передаче сигнала. Дендриты – это безоболочечные отростки.

Синапс

Место, в котором происходит контакт между ответвлениями нейронов или между аксоном и принимающей клеткой (например, мышечной), называется синапсом. В нем может участвовать всего по одному ответвлению от каждой клетки, но чаще всего контакт происходит между несколькими отростками. Каждый вырост аксона может контактировать с отдельным дендритом.

дендрит нейрона

Сигнал в синапсе может передаваться двумя способами:

  1. Электрическим. Это происходит только в случае, когда ширина синаптической щели не превышает 2 нм. Благодаря такому маленькому разрыву импульс проходит через него, не задерживаясь.
  2. Химическим. Аксоны и дендриты вступают в контакт благодаря разнице потенциалов в мембране передающего отростка. С одной ее стороны частицы имеют положительный заряд, с другой – отрицательный. Это обусловлено разной концентрацией ионов калия и натрия. Первые находятся внутри мембраны, вторые – снаружи.

При прохождении заряда увеличивается проницаемость мембраны, и натрий входит в аксон, а калий выходит из него, восстанавливая потенциал.

Сразу после контакта отросток становится невосприимчивым к сигналам, через 1 мс способен к передаче сильных импульсов, через 10 мс возвращается в исходное состояние.

Дендриты – это принимающая сторона, передающая импульс от аксона телу нервной клетки.

Функционирование нервной системы

Нормальное функционирование нервной системы зависит от передачи импульса и химических процессов в синапсе. Не менее важную роль играет создание нервных связей. Способность к обучению присутствует у людей именно благодаря возможности организма формировать новые соединения между нейронами.

аксоны и дендриты

Любое новое действие на стадии изучения требует постоянного контроля со стороны мозга. По мере его освоения образуются новые нейронные связи, со временем действие начинает выполняться автоматически (например, умение ходить).

Дендриты – это передающие волокна, составляющие примерно треть всей нервной ткани организма. Благодаря их взаимодействию с аксонами люди имеют возможность обучаться.

Читайте также:

      

  • Отчет резервиста о выполнении индивидуального плана в доу
  •   

  • Кто такой машинист кратко
  •   

  • 5 школа саяногорск педагогический состав
  •   

  • Краткосрочный план урока по русскому языку по обновленной программе 8 класс
  •   

  • Игровая деятельность на музыкальных занятиях в доу


Строение нейрона - meduniver.com

Видео: Строение нейрона — meduniver.com

Содержание

  • Главное отличие — Аксон против Дендрита
  • Что такое аксон
  • Что такое дендрит
  • Сходства между аксоном и дендритом
  • Разница между аксоном и дендритом

Главное отличие — Аксон против Дендрита

Аксон и дендрит являются двумя компонентами нервных клеток. Нервные клетки являются структурными и функциональными единицами нервной системы животных. Они передают нервные импульсы в мозг, спинной мозг и тело, чтобы координировать функции организма. Аксон — это длинное коническое удлинение клеточного тела нервной клетки. У каждой нервной клетки есть аксон. Короткие структуры, которые простираются от тела клетки, называются дендритами.Одна нервная клетка имеет много дендритов. главное отличие между аксоном и дендритом является то, что аксон переносит нервные импульсы от тела клетки, тогда как дендриты переносят нервные импульсы от синапсов к телу клетки.

Ключевые области покрыты

1. Что такое аксон
      — определение, характеристики, функции
2. Что такое дендрит
      — определение, характеристики, функции
3. Каковы сходства между аксоном и дендритом
      — Краткое описание общих черт
4. В чем разница между аксоном и дендритом
      — Сравнение основных различий

Ключевые слова: аксон, аксонный бугорок, клеточное тело, дендриты, миелин, миелиновые нервные волокна, нервные клетки, немиелинизированные нервные волокна

Что такое аксон

Аксон — одиночная, длинная проекция нервной клетки. Аксоны уносят нервные импульсы от тела клетки. Мембрана, которая покрывает аксон, называется аксолеммой. Аксоплазма — это цитоплазма аксона. Аксоны разветвлены на своих терминальных концах. Кончики разветвленных концов образованы телодендрией. Терминалы аксона — это раздутые концы телодендрии. Терминалы аксона образуют синаптическую связь с дендроном другого нейрона или с эффекторным органом. Мембрана аксонного терминала связана с мембраной клетки-мишени. Везикулы, которые содержат нейротрансмиттеры, присутствуют в терминалах аксонов для передачи нервных импульсов посредством химических сигналов через синаптическую щель. Аксонный бугорок является начальным сегментом аксона. Это инициирует потенциал действия. Поперечное сечение аксона показано в Рисунок 1.

Рисунок 1: Поперечное сечение аксона
1 — аксон, 2 — ядро ​​клетки Шванна, 3 — клетка Шванна, 4 — миелиновая оболочка

Два типа аксонов — миелинизированные аксоны и немиелинизированные аксоны. Миелиновая оболочка образует изоляцию на аксоне, чтобы увеличить скорость передачи нервных импульсов через аксон. Этот тип передачи нервных импульсов называется солевой проводимостью. Клетки Шванна секретируют миелин на аксонах периферической нервной системы. Олигодендроциты выделяют миелин на аксонах центральной нервной системы. Миелинизированные аксоны белого цвета. Пробелы в миелиновой оболочке называются узлами Ранвье. Белое вещество головного и спинного мозга состоит из миелинизированных аксонов.

Что такое дендрит

Дендрит — это коротко-разветвленное расширение, которое переносит нервные импульсы в тело клетки из синапсов. Многие дендриты распространяются из одноклеточного тела нервной клетки. Дендриты являются сильно разветвленными структурами. Эта сильно разветвленная природа увеличивает площадь поверхности, которая может принимать сигналы от синапсов. Дендриты и аксоны нервных клеток показаны в фигура 2.

Рисунок 2: Дендриты и Аксоны

Дендриты имеют сужающиеся концы. Поскольку дендриты представляют собой короткие проекции, они не миелинизируются.

Сходства между аксоном и дендритом

  • И аксон, и дендрит являются проекциями клеточного тела нервной клетки.
  • И аксон, и дендрит передают нервные импульсы.
  • И аксон, и дендрит являются разветвленными структурами.
  • И аксон, и дендрит содержат нейрофибриллы.

Разница между аксоном и дендритом

Определение

Axon: Аксон — это длинная нитевидная часть нервной клетки, которая проводит нервные импульсы от тела клетки.

Dendrite: Дендрит — это короткое разветвленное расширение нервной клетки, которое передает нервные импульсы в тело клетки из синапсов.

Число

Axon: Нервная клетка имеет только один аксон.

Dendrite:  нервная клетка имеет много дендритов.

происхождения

Axon: Аксон возникает из конической проекции, называемой аксон бугорком.

Dendrite: Дендриты возникают непосредственно из нервной клетки.

длина

Axon: Аксоны очень длинные (несколько метров).

Dendrite: Дендриты очень короткие (около 1,5 мм).

Диаметр

Axon: Аксоны имеют одинаковый диаметр.

Dendrite: Дендриты имеют сужающиеся концы; поэтому диаметр постоянно уменьшается.

разветвление

Axon: Аксоны разветвлены на своих концах.

Dendrite: Дендриты все время разветвляются.

Синаптические ручки

Axon: Концы конечных ветвей аксона увеличены, чтобы сформировать синаптические ручки.

Dendrite: На кончиках ветвей дендритов не встречаются синаптические ручки.

Пузырьки

Axon: Синаптические ручки аксонов содержат везикулы с нейротрансмиттерами.

Dendrite: Дендриты не имеют пузырьков, которые содержат нейротрансмиттеры.

Гранулы Ниссля

Axon: Аксоны не содержат гранул Ниссля.

Dendrite: Дендриты содержат гранулы Ниссля.

Миелиновый / Non-миелинизированный

Axon: Аксоны могут быть миелинизированными или немиелинизированными.

Dendrite: Дендриты немиелинизированы.

Направление передачи

Axon: Аксоны уносят нервные импульсы от тела клетки.

Dendrite: Дендриты несут нервные импульсы к телу клетки.

Афферентные / Эфферентная

Axon: Аксоны образуют эфферентный компонент нервного импульса.

Dendrite: Дендриты образуют афферентный компонент нервного импульса.

Заключение

Аксон и дендрит — это два типа проекций нервной клетки. И аксоны, и дендриты передают нервные импульсы. Аксон длиннее дендрита. Диаметр аксона является однородным, в то время как дендриты состоят из сужающихся концов. Некоторые аксоны миелинизированы, чтобы ускорить передачу нервных импульсов. Аксоны передают нервные импульсы от тела клетки, а дендриты передают нервные импульсы к телу клетки. Поэтому основным отличием аксона от дендрита является направление передачи нервных импульсов.

Ссылка:

1. «Аксон». Википедия, Фонд Викимедиа, 1 сентября 2017 г.,

Рассмотрим более подробно строение
отростков нейрона и различия между
ними. Как уже было сказано, определяющее
отличие отростков — функциональное,
т.е. направление проведения нервного
импульса: по аксону он проводится от
тела клетки, по дендриту — к телу.
Существует и ряд анатомических различий,
однако они не абсолютны и возможен ряд
исключений из них. Тем не менее, для
типичных аксонов и дендритов характерны
следующие признаки:

  1. Аксон один, а дендритов несколько (хотя
    существуют нейроны и с одним дендритом).

  2. Дендрит короче аксона. Длина дендрита
    обычно не более700 мкм, а аксон может
    достигать длины 1 м.

  3. Дендрит плавно отходит от
    тела нейрона и постепенно истончается.
    Аксон, отходя от тела клетки, практически
    не меняет диаметр на всем своем
    протяжении. Диаметр различных аксонов
    колеблется от 0,3 до 16 мкм. От их толщины
    зависит скорость проведения нервного
    импульса — чем аксон толще, тем скорость
    больше. Участок, примыкающий к телу
    нейрона (аксонный холмик), имеет большую
    толщину, чем остальная часть аксона.

  4. Дендриты ветвятся на всем
    своем протяжении под острым углом,
    дихотомически (вильчато), ветвление
    начинается от тела клетки. Аксон обычно
    ветвится только на конце, образуя
    контакты (синапсы) с другими клетками.
    Конечные разветвления аксона называют
    терминалами. В некоторых местах от
    аксонов могут отходить под прямым углом
    тонкие ответвления — коллатерали.

  5. Дендриты (по крайней мере,
    в ЦНС) не имеют миелиновой оболочки,
    аксоны часто окружены миелиновой
    оболочкой (о миелиновой оболочке см.
    ниже).

Кроме того, иногда на веточках
дендрита есть выросты
шипики, являющиеся
характерной структурной особенностью
дендритов, особенно в коре больших
полушарий (рис. 6). Шипик состоит из двух
частей — тела и головки, размеры и форма
которых варьируют. Шипики значительно
увеличивают постсинаптическую поверхность
дендрита. Они являются лабильными
образованиями и при различных воздействиях
(или разных функциональных состояниях)
могут менять свою конфигурацию,
дегенерировать и вновь появляться. В
результате увеличивается либо уменьшается
число синапсов, меняется эффективность
передачи в них нервного сигнала и т.д.

Рис. 6. Шипик на
дендрите нейрона и контактирующие с
ним пресинаптические окончания. Стрелками
показано направление проведения
информации

Теперь, когда мы рассмотрели
строение дендритов и аксонов, следует
несколько детальнее изучить строение
синапса. Синапс, состоящий из одного
пре- и одного постсинаптического
окончаний, называют простым. Однако
большинство синапсов в ЦНС являются
сложными. В таких синапсах один аксон
может контактировать сразу с несколькими
дендритами благодаря нескольким
мембранным выростам на его окончании.
И наоборот, один дендрит за счет своих
шипиков может контактировать с несколькими
аксонами. Еще более сложную структуру
имеют синаптические гломерулы
(клубочки)— компактные
скопления окончаний нервных отростков
разных клеток, формирующие большое
количество взаимных синапсов. Обычно
гломерулы окружены оболочкой из глиальных
клеток. Особенно характерно присутствие
гломерул в тех зонах мозга, где происходит
наиболее сложная обработка сигналов —
в коре больших полушарий и мозжечка, в
таламусе.

Итак, нейрон состоит из тела
(сомы) и отростков. Как правило, один из
отростков существенно длиннее остальных.
Такой длинный отросток называют нервным
волокном.
В ЦНС это
всегда аксон; в периферической нервной
системе это может быть как аксон, так и
дендрит. По волокнам проводятся нервные
импульсы, имеющие электрическую природу,
в связи с чем, каждое волокно нуждается
в изолирующей оболочке.

По типу такой оболочки все
волокна делятся на миелиновые
(мякотные) и безмиелиновые
(безмякотные).
Безмиелиновые нервные волокна покрыты
только оболочкой, образованной телом
шванновской (нейроглиальной) клетки.
Эти волокна имеют малый диаметр и
полностью либо частично погружены во
впячивание шванновской клетки. Одна
шванновская клетка может образовывать
оболочку вокруг нескольких аксонов
разного диаметра. Такие волокна называются
волокнами кабельного типа (рис. 7). Так
как длина аксона существенно больше
размеров шванновских клеток, оболочку
аксона образуют цепочки нейроглиальных
клеток. Скорость проведения нервного
импульса по таким волокнам — 0,5-2 м/с.

Многие нервные волокна
имеют миелиновую оболочку. Она также
образуется нейроглиальными клетками.
При формировании такой оболочки
олигодендроцит (в ЦНС) или шванновская
клетка (в периферической нервной системе)
обхватывает участок нервного волокна
(рис. 8). После этого образуется вырост
в виде язычка, который закручивается
вокруг волокна, образуя мембранные слои
(цитоплазма при этом из «язычка»
выдавливается). Таким образом, миелиновая
оболочка представляет собой двойные
слои клеточной мембраны и по своему
химическому составу является липопротеидом,
т.е. соединением липидов (жироподобных
веществ) и белков. Миелиновая оболочка
осуществляет электрическую
изоляцию нервного волокна наиболее
эффективно. Нервный импульс проводится
по такому волокну быстрее,
чем по лишенному миелина (скорость
проведения может достигать
120 м/с). Миелиновая оболочка начинается
немного
отступя от тела нейрона и заканчивается
примерно в 2
мкм от синапса. Она состоит из цилиндров
длиной 1,5-2
мм,
каждый из которых образован своей
глиальной клеткой.
Цилиндры разделяют перехваты Ранвье —
не покрытые
миелином участки волокна (их длина 0,5 —
2,5 мкм), играющие большую роль в быстром
проведении нервного импульса. В перехватах
от аксона могут отходить коллатерали.
Поверх миелиновой оболочки у мякотных
волокон есть еще
наружная оболочка — неврилемма,
образованная цитоплазмой и ядром
нейроглиальных клеток.

Рис. 7. Строение
нервных волокон:

А

миелиновое;
Б

безмиелиновая;
I

волокно;
2

миелиновый
слой;
3
ядро
шванновской клетки; 4

микротрубочки;
5
Нейрофиламенты;
6

митохондрии;
7—соединительнотканная
оболочка

Рис.
8.
Строение миелиновой оболочки (А).

Образование
миелиновой оболочки шванновской клеткой
(Б):

1

аксон;
2

слои
миелиновой оболочки;
3
перехваты
Ранвье;

4

ядро
шванновской клетки. Стрелкой показано
направление

продвижения
выроста цитоплазматической мембраны

Миелин
имеет белый цвет. Именно это его свойство
позволило
разделить вещество нервной системы на
серое и белое. Тела
нейронов и их короткие отростки образуют
более темное серое
вещество,
а
волокна — белое
вещество.

    1. Классификация
      нейронов

Нейроны очень
разнообразны по форме, величине,
количеству и способу отхождения от тела
отростков, химическому строению (имеется
в виду, в первую очередь, синтез тех или
иных нейромедиаторов) и т.д. (рис. 9). Тела
самых крупных нейронов достигают в
диаметре 100 — 120 мкм (гигантские пирамиды
Беца в коре больших полушарий), самых
мелких — 4-5 мкм (зернистые клетки коры
мозжечка). Приведем основные способы
классификации нервных клеток.

Рис.
9.
Различные типы нейронов:

А

псевдоуниполярный
нейрон спинномозгового ганглия;

Б

биполярный
нейрон сетчатки; В

мотонейрон
спинного мозга;

Г

пирамидная
клетка коры больших полушарий (видно,
что дендриты
покрыты
шипиками); Д

клетка
Пуркинье мозжечка;
I

тело
клетки;

2

дендрит;
3

аксон;
4

коллатерали
аксона

  1. Функционально
    нейроны подразделяются на чувствительные
    (сенсорные), вставочные (переключательные,
    интернейроны)
    и исполнительные (двигательные или
    мотонейроны и
    др.). Сенсорные
    нейроны

    это нервные клетки, воспринимающие
    раздражения из внешней или внутренней
    среды организма.
    Интернейроны
    (вставочные
    нейроны) обеспечивают связь
    между чувствительными и исполнительными
    нейронами рефлекторных дугах. Общее
    направление эволюции нервной системы
    связано с увеличением числа интернейронов.
    Из более
    чем ста миллиардов нейронов человека
    более 70% составляют
    вставочные нейроны.

Исполнительные
нейроны,
управляющие сокращениями поперечно —
полосатых мышечных волокон, называют
двигательными
(мотонейронами).
Они
образуют нервно-мышечные синапсы.
Исполнительные нейроны, называемые
вегетативными, управляют
работой внутренних органов, включая
гладкомышечные волокна, железистые
клетки и др.

2. По количеству отростков
нейроны делятся на униполярные,
псевдоуниполярные, биполярные и
мультиполярные.Большинство
нейронов нервной системы (и почти все
нейроны в ЦНС) — это мультиполярные
нейроны
(см.
рис. 9, В — Д), они имеют
один аксон и несколько дендритов.
Биполярные
нейроны
(см.
рис. 9, Б) имеют один аксон и один дендрит
и характерны для
периферических отделов анализаторных
систем. Униполярных
нейронов, имеющих только один отросток,
у человека практически
нет. Из тела псевдоуниполярного
нейрона
(см.
рис.9,
А) выходит один отросток, который
практически сразу делится
на две ветви. Одна из них выполняет
функцию дендрита, а
другая — аксона. Такие нейроны находятся
в чувствительных спинномозговых
и черепных ганглиях. Их дендрит
морфологически
(по строению) похож на аксон: он гораздо
длиннее аксона и часто имеет миелиновую
оболочку.

3. По форме тела и характеру
ветвления отростков выделяют звездчатые,
пирамидные, веретеновидные, корзинчатые,
зернистые
и др. нейроны.

  1. По длине аксона нейроны делят
    на клетки типа Гольджи I и типа Гольджи
    II (эта классификация разработана
    итальянским ученым К.
    Гольджи). Клетки Гольджи I
    имеют длинный
    аксон, выходящий за пределы области, в
    которой находится
    тело нейрона. Это, например, пирамидные
    клетки коры
    больших полушарий. У клеток Гольджи II
    короткий и, как
    правило, очень разветвленный аксон, не
    выходящий за пределы
    области, в которой находится тело
    нейрона. Примером
    таких нейронов могут быть корзинчатые
    клетки коры мозжечка.

  2. Каждый нейрон синтезирует
    только один основной нейромедиатор.
    Для того чтобы определить нервную
    клетку с этой
    точки зрения к названию медиатора
    добавляют окончание
    «-ергический». Например, ацетилхолинергический
    нейрон образует ацетилхолин,
    глицинергический — глицин и т.д.

Соседние файлы в предмете Анатомия и физиология

  • #

    01.06.201515.58 Mб544ОТ НЕЙРОНА К МОЗГУ.doc

  • #
  • #
  • #
  • #
  • #

ОБЩАЯ ГИТОЛОГИЯ — НЕРВНАЯ ТКАНЬ

Общая информация

Нервная ткань – это система взаимосвязанных нервных клеток и нейроглии,
обеспечивающих специфические функции восприятия раздражений,
возбуждения, выработки импульса и его передачи. Она является основой
строения органов нервной системы, обеспечивающих регуляцию всех тканей
и органов, их интеграцию в организме и связь с окружающей средой.

Типы клеток

  • Нервные клетки

Основные структурные компоненты нервной ткани, выполняющие специфическую функцию

  • Глиальные клетки

Обеспечивают существование и функционирование нервных клеток, осуществляя опорную, трофическую, разграничительную, секреторную и защитную функции

Глиоциты

Количество: в 5-10 раз больше, чем нервных клеток.
Функции: опорная, стромальная, трофическая, защитная, всасывательная имвыделительная

Форма: призматическая.
Что выстилают? желудочки головного мозга и центральный канал спинного мозга.
Они образуют эпендиму. Между соседними клетками плотные соединения отсутствуют. Большинство эпендимоцитов имеют подвижные реснички, вызывающие ток цереброспинальной жидкости.

Танициты — клетки, базальная поверхность которых имеет длинный отросток, пронизывающий все вещество мозга и на его поверхности образующий отграничительную глиальную мембрану. Многочисленны в дне III желудочка, передают информацию о составе цереброспинальной жидкости на первичную капиллярную сеть воротной системы гипофиза.

Эпендимный эпителий сосудистых сплетений желудочков продуцирует цереброспинальную жидкость (ликвор)

Эпендимоциты

Эпендимоциты

Волокнистые (фиброзные)

Локализуются в белом
веществе ЦНС

Имеют тонкие длинные
слабоветвящиеся отростки,
которые на концах
разветвляются и формируют
отграничительные мембраны.

Протоплазматические

Локализуются в сером
веществе ЦНС

Имеют многочисленные короткие
разветвления, широкие отростки,
часть которых окружает кровеносные
капилляры, участвуют в образовании
гематоэнцефалического барьера;
также отростки изолируют синапсы.
По отросткам переносятся из крови к
нейронам питательные вещества.
Функции: трофическая, защитная
(иммунобиологическая защита)

Астроциты

Протоплазматические астроциты

Волокнистые (фиброзные) астроциты

Олигодендроциты

Микроглия

Ветвистая микроглия

Представляет собой фагоцитирующие клетки, относящиеся к системе мононуклеарных фагоцитов. Клетки микроглии характеризуются небольшими размерами, тела их имеют продолговатую форму.

Имеют более мелкие по сравнению с астроцитами и более интенсивно окрашивающиеся ядра. Их отростки немногочисленны. Олигодендроглиоциты присутствуют как в сером, так и в белом веществе. В сером веществе они локализуются вблизи перикарионов. В белом веществе их отростки образуют миелиновый слой в миелиновых нервных волокнах. В периферической нервной системе олигодендроциты представлены нейролеммоцитами, которые образуют оболочки вокруг отростков нейронов, и мантийными клетками, окружающими тела нейронов.

Олигодендроциты

Функция: защита от инфекции и повреждения, удаление продуктов разрушения нервной ткани.

Ветвистая микроглия

Встречается как в сером, так и в
белом веществе центральной
нервной системы. В цитоплазме
клеток реактивной микроглии
присутствуют плотные тельца,
липидные включения, лизосомы.

Реактивная микроглия

Формируется вследствие
активации покоящейся
микроглии при травмах
центральной нервной системы.

Реактивная микроглия

Нейроны

Эффекторные
(эфферентные)
нейроны

Специализированные клетки нервной системы, ответственные за получение, обработку и передачу сигнала (на: другие нейроны, мышечные или секреторные клетки). Нейрон является морфологически и функционально самостоятельной единицей, но с помощью своих отростков осуществляет синаптический контакт с другими нейронами.

Нейроны

Тело клетки содержит крупное светлое ядро с I-2 ядрышками, в цитоплазме содержатся все органеллы, особенно канальцы гранулярной ЭПС. Рибосомы образуют скопления – глыбки базофильного вещества (нет в аксоне и аксональных холмиках) по всей цитоплазме, в них идет синтез всех необходимых веществ, которые от тела транспортируются по отросткам.

Дендриты представляют собой истинные выпячивания тела клетки. По дендритам распространяются импульсы к телу нейрона. Они содержат те же органеллы, что и тело клетки: глыбки хроматофильной субстанции, митохондрии, большое количество микротрубочек и нейрофиламентов.

Аксон – это отросток, по которому импульс передается от тела клетки. Он содержит митохондрии, нейротубулы и нейрофиламенты, а также гладкую эндоплазматическую сеть.

Рефлекторная дуга

В зависимости от функции различают три типа нейронов:

Ведущую роль в образовании и проведении нервного импульса выполняет плазмолемма нейронов. При действии раздражителя в зоне воздействия происходит волна деполяризации распространяется по плазмолемме.

Чувствительные
(афферентные)
нейроны

Образуют 1-ое звено рефлекторной дуги (спинномозговые узлы). Длинный дендрит идет на периферию и там заканчивается нервным окончанием, а короткий аксон в соматической рефлекторной дуге поступает в задние рога спинного мозга. Афферентный нейрон преобразует раздражение в нервный импульс.

Вставочные
нейроны

Располагаются в спинном и головном мозге; второе звено рефлекторной дуги, отвечает за передачу информации.

Передают информацию на рабочие клетки. Имеют короткие разветвленные дендриты и длинный аксон, который достигает скелетное мышечное волокно и через нервно-мышечный синапс передает нервный импульс.

Функция: синтез и секретированные биологически активных веществ, в частности нейромедиаторов.

1 — ядро с эксцентричным ядрышком
2 — зона комплекса Гольджи и накопления нейросекрета (гранулы фиолетового цвета)
3 — хроматофильное в-во Ниссаля

Секреторные нейроны

В цитоплазме таких нейронов и в их аксонах находятся различной величины гранулы нейросекрета, содержащие белок, а в некоторых случаях липиды и полисахариды.
Гранулы нейросекрета выводятся непосредственно в кровь или в мозговую жидкость. Нейросекреты выполняют роль нейрорегуляторов, участвуя во взаимодействии нервной и гуморальной систем интеграции.

Секреторный нейрон

Секреторные нейроны

Отросток нервной клетки в нервном волокне называют осевым цилиндром, или аксоном, так как чаще всего (за исключением чувствительных нервов) в составе нервных волокон находятся именно аксоны. В ЦНС оболочки отростков нейронов образуются отростками олигодендроглиоцитов, а в ПНС — нейролеммоцитами.

Миелиновые нервные волокна

Безмиелиновые нервные волокна

Нервные волокна

Безмиелиновые нервные волокна

Место нахождения: в составе автономной, или вегетативной, нервной системы.
Нейролеммоциты оболочек безмиелиновых нервных волокон, располагаясь плотно, образуют тяжи. В нервных волокнах внутренних органов, как правило, в таком тяже имеется не один, а несколько осевых цилиндров (волокна кабельного типа), принадлежащих различным нейронам. Они могут, покидая одно волокно, переходить в соседнее.

По мере погружения осевых цилиндров в тяж нейролеммоцитов оболочки последних прогибаются, плотно охватывают осевые цилиндры и, смыкаясь над ними, образуют глубокие складки, на дне которых и располагаются отдельные осевые цилиндры. Сближенные в области складки участки оболочки нейролеммоцита образуют сдвоенную мембрану – мезаксон, на которой как бы подвешен осевой цилиндр. Скорость проведения импульса 1-5 м/с.

Где встречается? в центральной и в периферической нервной системе

Они значительно толще безмиелиновых нервных волокон. Диаметр осевых цилиндров этого типа волокон значительно толще, а оболочка сложнее.
Миелиновый слой оболочки такого волокна содержит значительное количество липидов, поэтому при обработке осмиевой кислотой он окрашивается в темно-коричневый цвет. Через определенные интервалы (1-2 мм) видны участки волокна, лишенные миелинового слоя, — это т.н. узловатые перехваты, или перехваты Ранвье.

В процессе миелинизации аксон погружается в желобок на поверхности нейролеммоцита. Образуется двойная складка плазмолеммы нейролеммоцита – мезаксон, который удлиняется, концентрически наслаивается (как бы накручивается) на осевой цилиндр и образует вокруг него плотную слоистую зону – миелиновый слой. Отсутствие миелинового слоя в области узловых перехватов объясняется тем, что в этом участке волокна кончается один нейролеммоцит и начинается другой.

Оболочка аксона (аксолемма) обладает в области перехвата значительной электронной плотностью. Отрезок волокна между смежными перехватами называется межузловым сегментом. Скорость передачи импульса миелиновыми волокнами – 5-120 м/с.

Для миелиновых волокон характерно сальтаторное проведение возбуждения, т.е. прыжками. Между перехватами идет электрический ток, скорость которого выше, чем прохождение волны деполяризации по аксолемме.

Миелиновые нервные волокна

Безмиелиновые нервные волокна

Миелиновые нервные волокна

Нервный импульс доходит до пресинаптической части и активирует синаптические пузырьки. Синаптический пузырек подходит к пресинаптической мембране, сливается с ней и нейромедиатор из синаптического пузырька попадает в синаптическую щель и действует на рецептор постсинаптической мембраны, что вызывает её деполяризацию, которая передается по центральному отростку следующего нейрона.

Аксо-аксональные

Межнейрональные контакты

Межнейрональные контакты

Аксо-соматические

Аксо-дендритические

Синапсы – это структуры, предназначенные для передачи импульса с одного нейрона на другой или на мышечные и железистые структуры.
Синапсы определяют направление проведения импульса. Нервные клетки соединены между собой посредством синапсов.

Эффекторные синапсы – синапсы, которые заканчиваются на рабочих клетках. Нервно-мышечные синапсы образуются на скелетном мышечном волокне; содержат пресинаптическую часть, которая образована конечным терминальным отделом аксона двигательного нейрона и внедряется в скелетное мышечное волокно. А прилежащий участок скелетного мышечного волокна образует постсинаптическую часть. В этой части отсутствуют миофибриллы, но в большом количестве располагаются ядра и митохондрии, а сарколемма формирует постсинаптическую мембрану

Постсинаптическая часть содержит постсинаптическую мембрану, которая содержит высокоспецифичные белковые рецепторы, реагирующие
только на конкретные медиаторы. Между пресинаптической и
постсинаптической частями находится синаптическая щель.

Двигательные нервные окончания – это концевые аппараты аксонов двигательных клеток соматической или вегетативной нервной системы.
При их участии нервный импульс передается на ткани рабочих органов.

Возбуждающие

Содержат возбуждающие
нейромедиаторы
(ацетилхолин, адреналин,
норадреналин,
глютаминовая кислота)

Адренергические

Передача импульса
совершается с помощью
медиатора адреналина

Холинергические

Передача импульса
совершается с помощью
медиатора ацетилхолина

Тормозные

Содержат тормозные
нейромедиаторы
(глицин, ГАМК — гамма
аминомасляная кислота)

СИНАПСЫ

и

Рецепторы

Межнейрональные контакты

Экстерорецепторы

  • слуховые
  • зрительные
  • обонятельные
  • вкусовые
  • осязательные

Интерорецепторы

  • висцеро-рецепторы (сигнализирующие о состоянии внутренних органов)
  • проприорецепторы (рецепторы опорно-двигательного аппарата)

Рецепторы рассеяны по всему организму и воспринимают различные раздражения как из внешней среды, так и от внутренних органов.
Соответственно выделяют две большие группы рецепторов:

В зависимости от специфичности раздражения, воспринимаемого данным видом рецептора, все чувствительные окончания делят на механорецепторы, барорецепторы, хеморецепторы, терморецепторы и некоторые другие.

Инкапсулированные

  • Покрытые соединительной тканной капсулой
  • Тельца Фатера — Пачини

Неинкапсулированные

  • Не покрыты соединительной тканной капсулой
  • Тельца Мейснера

По особенностям строения чувствительные окончания подразделяют на:

Свободные нервные окончания
Состоящие только из конечных ветвлений осевого цилиндра

Воспринимают холод, тепло и боль. Такие окончания характерны для эпителия. В этом случае миелиновые нервные волокна подходят к эпителиальному пласту, теряют миелин, а осевые цилиндры проникают в эпителий и распадаются там между клетками на тонкие терминальные ветви.

Несвободные нервные окончания
Содержащие в своем составе все компоненты нервного волокна, а именно ветвления осевого цилиндра и клетки глии

Регенерация

Нервная клетка сохраняет способность к регенерации при условии сохранения тела нейрона, а отростки и нервные волокна регенерируют примерно со скоростью 1-2 мм в сутки.

Регенерация зависит от места травмы. Как в центральной, так и в
периферической нервной системе погибшие нейроны не восстанавливаются.
Полноценной регенерации нервных волокон в центральной нервной системе
обычно не происходит, но нервные волокна в составе периферических нервов
обычно хорошо регенерируют.
Поврежденные нервные волокна головного и спинного мозга не регенерируют.
Однако при малых травмах центральной нервной системы возможно
частичное восстановление ее функций, обусловленное пластичностью
нервной ткани.

Разница между аксоном и дендритами


Автор:

Peter Berry


Дата создания:

17 Август 2021


Дата обновления:

1 Апрель 2023


Строение нейрона - meduniver.com

Видео: Строение нейрона — meduniver.com

Содержание

  • Главное отличие
  • Сравнительная таблица
  • Что такое Аксон?
  • Какие дендриты?
  • Аксон против Дендрита

Главное отличие

Центральная нервная система является одной из главных систем нашего организма. Он контролирует наше тело по-разному. У него есть нервы, которые передают сигналы от центральной нервной системы к частям тела. Основной единицей центральной нервной системы является нейрон. Он определяется как специализированная клетка, которая передает нервные импульсы; это также называют нервной клеткой. Аксоны и дендриты являются частью нейрона. Аксон — это длинная нитевидная часть нейрона, по которой нервный импульс перемещается от тела клетки к другим частям. Принимая во внимание, что дендрит — это короткое продолжение нейрона, посредством которого импульсы принимаются от центра и далее передаются в тело клетки или аксон нейрона. Проще говоря, аксоны — это выход нейрона, а дендриты — это вход нейрона. Дендриты получают информацию из внешней или внутренней среды и передают информацию в тело клетки и аксон нейрона. Дендриты многочисленны и коротки, а аксон одинок, но различается по длине.

Сравнительная таблица

аксон дендрит
функция Аксон забирает информацию или импульс от тела клетки. Дендрит приносит информацию или импульс в клеточное тело нейрона.
Рибосомы и миелиновая оболочка У аксонов нет рибосом, хотя они могут иметь миелиновую оболочку. У дендритов есть рибосомы, но нет миелиновой оболочки вокруг них.
ветви У аксонов есть ветви далеко от тела клетки, и эти ветви присутствуют в конечной точке или конечной точке аксона нейрона. Дендриты имеют ветви возле тела клетки, и эти ветви присутствуют в начале нейрона.
Гранулы Ниссля Аксоны не содержат гранул Ниссля. У дендритов есть гранулы Ниссля.
Пузырьки У аксонов есть пузырьки, которые содержат нейротрансмиттер в них. Дендриты не имеют пузырьков.

Что такое Аксон?

Аксон происходит от греческого слова, которое означает ось. Аксон является выходом нейрона. Его функция заключается в передаче информации от тела нейрона к другой части тела или другому нейрону. Аксоны имеют равномерный диаметр и гладкую поверхность. В каждой клетке присутствует только один аксон. Аксон начинается как аксонный бугорок, который представляет собой опухоль на стыке между сомой и аксоном нейрона. Он содержит много натриевых (Na) каналов, которые помогают генерировать потенциал действия по всему нейрону. Аксоны обычно длинные, и они заканчиваются как терминальные аксоны на другом нейроне или части тела. Обратите внимание, что аксон имеет ветви только на своем терминале. В аксонах также есть много пузырьков, в которых присутствуют различные нейротрансмиттеры. Он также имеет кальциевые (Ca) каналы в своей мембране. Аксоны не содержат гранул Ниссля. У этого также нет рибосомы. Аксоны бывают двух типов: миелинизированные аксоны и немиелинизированные аксоны. Миелиновые аксоны имеют миелиновую оболочку вокруг них. Миелиновая оболочка действует как изолятор, а также образует узлы Ранвье, которые помогают в спасительной проводимости. У немиелинизированных аксонов нет миелиновой оболочки вокруг них. Аксоны заканчиваются через синапс, если аксон одного нейрона соединен с аксоном другого нейрона, он называется аксоаксоном. Если аксон одного нейрона связан с дендритом другого нейрона, он называется аксодендритным. И если аксон одного нейрона напрямую связан с сомой, он называется аксосоматическим. Аксоны также образуют нервно-мышечные соединения в мышцах, непосредственно заканчиваясь на них.

Какие дендриты?

Дендрит происходит от греческого слова, которое означает дерево. Дендрит является входом нейрона. Его функция — получать информацию из центра и передавать ее в клеточное тело нейрона. Аксоны имеют неоднородный диаметр и шероховатую поверхность. В клетке много дендритов. Дендрит получает информацию из окружающей среды и передает ее вперед к телу клетки и аксону нейрона. Дендриты многочисленны в одном нейроне и относительно короче по сравнению с аксонами; у этого также есть много ветвей, которые присутствуют только в его происхождении. Если дендрит одного нейрона связан с аксоном другого нейрона, он известен как аксодендритный. И если дендриты связаны с дендритом другого нейрона, он известен как дендродендритный. Дендриты содержат гранулы Ниссля и имеют рибосомы. Они не имеют миелиновой оболочки вокруг них и имеют ответвления рядом с клеточным телом нейрона.

Аксон против Дендрита

  • Аксон забирает информацию или импульс от тела клетки, тогда как дендриты приносят информацию или импульс к телу клетки нейрона.
  • Аксоны длинные и одиночные на клетку, а дендриты короткие и множественные на клетку.
  • У аксонов нет рибосом, хотя они могут иметь миелиновую оболочку, в то время как у дендритов есть рибосомы, но вокруг них нет миелиновой оболочки.
  • У аксонов есть ветви далеко от тела клетки, и эти ветви присутствуют в конечной точке или конце аксона нейрона, и, в отличие от этого, дендриты имеют ветви около тела клетки, и эти ветви присутствуют в начале нейрона.
  • Аксоны не содержат гранул Ниссля, с другой стороны, дендриты имеют гранулы Ниссля.
  • У аксонов есть пузырьки, которые содержат нейротрансмиттер в них, но у дендрита нет пузырьков.

Пояснительное видео

https://www.youtube.com/watch?v=ZlDkTinnpXc

Введение в нейробиологию

7. Нейроны

Основными структурными особенностями нейронов являются перикария, дендриты и аксоны Нейроны содержат те же самые внутриклеточные компоненты, что и другие клетки Молекулярные маркеры могут использоваться для идентификации нейронов

Нейро́н, или невро́н (от др.-греч. νεῦρον — волокно, нерв) — структурно-функциональная единица нервной системы. Нейрон — электрически возбудимая клетка, которая обрабатывает, хранит и передает информацию с помощью электрических и химических сигналов. Нейрон имеет сложное строение и узкую специализацию. Клетка содержит ядро, тело клетки и отростки (дендриты и аксоны). В головном мозге человека насчитывается около 85—86 миллиардов нейронов[1][2]. Нейроны могут соединяться один с другим, формируя биологические нейронные сети. Нейроны разделяют на рецепторные, эффекторные и вставочные.

Сложность и многообразие функций нервной системы определяются взаимодействием между нейронами. Это взаимодействие представляет собой набор различных сигналов, передаваемых между нейронами или мышцами и железами. Сигналы испускаются и распространяются с помощью ионов. Ионы генерируют электрический заряд (потенциал действия), который движется по телу нейрона.

Важное значение для науки имело изобретение метода Гольджи в 1873 году, позволявшего окрашивать отдельные нейроны[3][4]. Термин «нейрон» (нем. Neuron) для обозначения нервных клеток введён Г. В. Вальдейером в 1891 году[5][6].

Строение нейронов

Нейрон состоит из тела диаметром от 3 до 130 мкм. Тело содержит ядро (с большим количеством ядерных пор) и органеллы (в том числе сильно развитый шероховатый ЭПР с активными рибосомамиаппарат Гольджи), а также из отростков. Выделяют два вида отростков: дендриты и аксон. Нейрон имеет развитый цитоскелет, который проникает в его отростки. Цитоскелет поддерживает форму клетки, его нити служат «рельсами» для транспорта органелл и упакованных в мембранные пузырьки веществ (например, нейромедиаторов). Цитоскелет нейрона состоит из фибрилл разного диаметра: Микротрубочки (Д = 20—30 нм) — состоят из белка тубулина и тянутся от нейрона по аксону, вплоть до нервных окончаний. Нейрофиламенты (Д = 10 нм) — вместе с микротрубочками обеспечивают внутриклеточный транспорт веществ. Микрофиламенты (Д = 5 нм) — состоят из белков актина и миозина, особенно выражены в растущих нервных отростках и в нейроглии.(Нейроглия, или просто глия (от др.-греч. νεῦρον — волокно, нерв + γλία — клей), — совокупность вспомогательных клеток нервной ткани. Составляет около 40 % объёма ЦНС. Количество глиальных клеток в среднем в 10—50 раз больше, чем нейронов).

В теле нейрона выявляется развитый синтетический аппарат, гранулярная ЭПС нейрона окрашивается базофильно и известна под названием «тигроид». Тигроид проникает в начальные отделы дендритов, но располагается на заметном расстоянии от начала аксона, что служит гистологическим признаком аксона. Нейроны различаются по форме, числу отростков и функциям. В зависимости от функции выделяют чувствительные, эффекторные (двигательные, секреторные) и вставочные. Чувствительные нейроны воспринимают раздражения, преобразуют их в нервные импульсы и передают в мозг. Эффекторные (от лат. effectus — действие) — вырабатывают и посылают команды к рабочим органам. Вставочные — осуществляют связь между чувствительными и двигательными нейронами, участвуют в обработке информации и выработке команд.

Различается антероградный (от тела) и ретроградный (к телу) аксонный транспорт.

Аксоны и дендриты

Аксон — длинный отросток нейрона. Приспособлен для проведения возбуждения и информации от тела нейрона к нейрону или от нейрона к исполнительному органу. Дендриты — короткие и сильно разветвлённые отростки нейрона, служащие главным местом образования влияющих на нейрон возбуждающих и тормозных синапсов (разные нейроны имеют различное соотношение длины аксона и дендритов), и которые передают возбуждение к телу нейрона. Нейрон может иметь несколько дендритов и обычно только один аксон. Один нейрон может иметь связи со многими (до 20 тысяч) другими нейронами.

Дендриты делятся дихотомически, аксоны же дают коллатерали. В узлах ветвления обычно сосредоточены митохондрии.

Дендриты не имеют миелиновой оболочки, аксоны же могут её иметь. Местом генерации возбуждения у большинства нейронов является аксонный холмик — образование в месте отхождения аксона от тела. У всех нейронов эта зона называется триггерной.

Си́напс (греч. σύναψις, от συνάπτειν — обнимать, обхватывать, пожимать руку) — место контакта между двумя нейронами или между нейроном и получающей сигнал эффекторнойклеткой. Служит для передачи нервного импульса между двумя клетками, причём в ходе синаптической передачи амплитуда и частота сигнала могут регулироваться. Одни синапсы вызывают деполяризацию нейрона и являются возбуждающими, другие — гиперполяризацию и являются тормозными. Обычно для возбуждения нейрона необходимо раздражение от нескольких возбуждающих синапсов.

Термин был введён английским физиологом Чарльзом Шеррингтоном в 1897 г.

Понравилась статья? Поделить с друзьями:
  • Что означает леруа мерлен по русски перевод
  • Что означает леруа по французски
  • Что означает кор в леруа мерлен
  • Что имеет аксон
  • Что образуют скопления аксонов