Что передается по аксону

В теле человека бессчетное количество клеток, каждая из которых имеет собственную функцию. Среди них самые загадочные – нейроны, отвечающие за любое совершаемое нами действие. Попробуем разобраться как работают нейроны и в чем их предназначение.

Что такое нейрон (нейронные связи)

В переводе с греческого нейрон, или как его еще называют неврон, означает «волокно», «нерв». Нейрон – это специфическая структура в нашем организме, которая отвечает за передачу внутри него любой информации, в быту называемая нервной клеткой.

Нейроны работают при помощи электрических сигналов и способствуют обработке мозгом поступающей информации для дальнейшей координации производимых телом действий.

Эти клетки являются составляющей частью нервной системы человека, предназначение которой состоит в том, чтобы собрать все сигналы, поступающие из вне или от собственного организма и принять решение о необходимости того или иного действия. Именно нейроны помогают справиться с такой задачей.

Каждый из нейронов имеет связь с огромным количеством таких же клеток, создаётся своеобразная «паутина», которая называется нейронной сетью. Посредством данной связи в организме передаются электрические и химические импульсы, приводящие всю нервную систему в состояние покоя либо, наоборот, возбуждения.

К примеру, человек столкнулся с неким значимым событием. Возникает электрохимический толчок (импульс) нейронов, приводящий к возбуждению неровной системы. У человека начинает чаще биться сердце, потеют руки или возникают другие физиологические реакции.

Мы рождаемся с заданным количеством нейронов, но связи между ними еще не сформированы. Нейронная сеть строится постепенно в результате поступающих из вне импульсов. Новые толчки формируют новые нейронные пути, именно по ним в течение жизни побежит аналогичная информация. Мозг воспринимает индивидуальный опыт каждого человека и реагирует на него. К примеру, ребенок, схватился за горячий утюг и отдернул руку. Так у него появилась новая нейронная связь.

Стабильная нейронная сеть выстраивается у ребенка уже к двум годам. Удивительно, но уже с этого возраста те клетки, которые не используются, начинают ослабевать. Но это никак не мешает развитию интеллекта. Наоборот, ребенок познает мир через уже устоявшиеся нейронные связи, а не анализирует бесцельно все вокруг.

Даже у такого малыша есть практический опыт, позволяющий отсекать ненужные действия и стремиться к полезным. Поэтому, например, так сложно отучить ребенка от груди — у него сформировалась крепкая нейронная связь между приложением к материнскому молоку и удовольствию, безопасности, спокойствию.

Познание нового опыта на протяжении всей жизни приводит к отмиранию ненужных нейронных связей и формированию новых и полезных. Этот процесс оптимизирует головной мозг наиболее эффективным для нас образом. Например, люди, проживающие в жарких странах, учатся жить в определенном климате, а северянам нужен совсем другой опыт для выживания.

Сколько нейронов в мозге

Нервные клетки в составе головного мозга занимают порядка 10 процентов, остальные 90 процентов это астроциты и глиальные клетки, но их задача заключается лишь в обслуживании нейронов.

Подсчитать «вручную» численность клеток в головном мозге также сложно, как узнать количество звезд на небе.

Тем не менее ученые придумали сразу несколько способов для определения количества нейронов у человека:

  • Рассчитывается число нервных клеток на небольшой части мозга, а затем, количество умножается пропорционально полному объему. Исследователи исходят из постулата о том, что нейроны равномерно распределены в нашем мозге.
  • Происходит растворение всех мозговых клеток. В результате получается жидкость, в составе которой можно увидеть клеточные ядра. Их можно посчитать. При этом служебные клетки, о которых мы сказали выше, не учитываются.

В результате описанных экспериментов установлено, что число нейронов в головном мозге человека — 85 миллиардов единиц. Ранее, на протяжении многих веков считалось, что нервных клеток больше, порядка 100 миллиардов.

Строение нейрона

На рисунке приведено строение нейрона. Он состоит из основного тела и ядра. От клеточного тела идет ответвление многочисленных волокон, которые именуются дендритами.

Строение

Мощные и длинные дендриты называются аксонами, которые в действительности намного длиннее, чем на картинке. Их протяженность варьируется от нескольких миллиметров до более метра.

Аксоны играют ведущую роль в передаче информации между нейронами и обеспечивают работу всей нервной системы.

Место соединения дендрита (аксона) с другим нейроном называется синапсом. Дендриты при наличии раздражителей могут разрастись настолько сильно, что станут улавливать импульсы от других клеток, что приводит к образованию новых синаптических связей.

Синаптические связи играют существенную роль в формировании личности человека. Так, личность с устоявшимся позитивным опытом будет смотреть на жизнь с любовью и надеждой, человек, у которого нейронные связи с негативным зарядом, станет со временем пессимистом.

Виды нейронов и нейронных связей

Нейроны можно обнаружить в различных органах человека, а не исключительно в головном мозге. Большое их количество расположено в рецепторах (глаза, уши, язык, пальцы рук – органы чувств). Совокупность нервных клеток, которые пронизывают наш организм составляет основу периферической нервной системы. Выделим основные виды нейронов.

Вид нейронной клетки За что отвечает
Аффекторные Являются переносчиками информации от органов чувств в головной мозг. У этого вида нейронов самые длинные аксоны. Импульс из вне поступает по аксонам строго в определенный участок головного мозга, звук — в слуховой «отсек», запах – в «обонятельный» и т.д.
Промежуточные Промежуточные нервные клетки обрабатывают сведения, поступившие от аффекторных нейронов и передают ее периферическим органам и мышцам.
Эффекторные На заключительном этапе в дело вступают эфференты, которые доводят команду промежуточных нейронов до мышц и других органов тела.

Слаженная работа нейронов трех типов выглядит так: человек «слышит» запах шашлыка, нейрон передает информацию в соответствующий раздел мозга, мозг передает сигнал желудку, который выделяет желудочный сок, человек принимает решение «хочу есть» и бежит покупать шашлык. Упрощенно так это действует.

Самыми загадочными являются промежуточные нейроны. С одной стороны, их работа обуславливает наличие рефлекса: дотронулся до электричества – отдернул руку, полетела пыль –зажмурился. Однако, пока не объяснимо как обмен между волокнами рождает идеи, образы, мысли?

Единственное, что установили ученые, это тот факт, что любой вид мыслительной деятельности (чтение книг, рисование, решение математических задач) сопровождается особой активностью (вспышкой) нервных клеток определенного участка головного мозга.

Есть особая разновидность нейронов, которые именуются зеркальными. Их особенность заключается в том, что они не только приходят в возбуждение от внешних сигналов, но и начинают «шевелиться», наблюдая за действиями своих собратьев – других нейронов.

Функции нейронов

Без нейронов невозможна работа организма человека. Мы увидели, что эти наноклетки отвечают буквально за каждое наше движение, любой поступок. Выполняемые ими функции до настоящего времени в полной мере не изучены и не определены.

Существует несколько классификаций функций нейронов. Мы остановимся на общепринятой в научном мире.

Функция распространения информации

Данная функция:

  • является основной;
  • изучена лучше остальных.

Суть ее в том, что нейронами обрабатываются и переносятся в головной мозг все импульсы, которые поступают из окружающего мира или собственного тела. Далее происходит их обработка, подобно тому, как работает поисковик в браузере.

По результатам сканирования сведений из вне, головной мозг в форме обратной связи передает обработанную информацию к органам чувств или мышцам.

Мы не подозреваем, что в нашем теле происходит ежесекундная доставка и переработка информации, не только в голове и на уровне периферической нервной системы.

До настоящего времени создать искусственный интеллект, который бы приблизился к работе нейронных сетей человека, не удалось. У каждого из 85 миллиардов нейронов имеется, как минимум, 10 тысяч обусловленных опытом связей, и все они работают на передачу и обработку информации.

Функция аккумуляции знаний (сохранения опыта)

Человек обладает памятью, возможностью понимать суть вещей, явлений и действий, которые он единожды или многократно повторял. За формирование памяти отвечают именно нейронные клетки, точнее нейротрансмиттеры, связующие звенья между соседними нейронами.

Таким образом, за память отвечает не какая-то отдельная часть мозга, а маленькие белковые мостики между клетками. Человек может потерять память, когда произошло крушение этих нервных связей.

Функция интеграции

Данная функция позволяет взаимодействовать между собой отдельным долям головного мозга. Как мы уже сказали, сигналы от разных органов чувств поступают в разные отделы мозга.

Нейроны посредством «вспышек» активности передают и принимают импульсы в разных частях мозга. Так происходит процесс появления мыслей, эмоций и чувств. Чем больше таких разноплановых связей, тем эффективнее человек мыслит. Если человек способен к размышлениям и аналитике в определенном направлении, то он будет хорошо соображать и в другом вопросе.

Функция производства белков

Нейроны – настолько полезные клетки, что не ограничиваются только передаточными функциями. Нервные клетки вырабатывают необходимые для жизни человека белки. Опять же ключевую роль в производстве белков имеют нейротрансмиттеры, которые отвечают за память.

Всего в невронах индуцируется порядка 80 белков, вот основные из них, влияющие на самочувствие человека:

  • Серотонин – вещество, вызывающее радость и удовольствие.
  • Допамин – ведущий источник бодрости и счастья для человека. Активизирует физическую активность, помогает проснуться, переизбыток может привести к состоянию эйфории.
  • Норадреналин – это «плохой» гормон, вызывающий приступы ярости и гнева. Наряду с кортизолом его называют гормоном стресса.
  • Глутамат – вещество, отвечающие за хранение памяти.

Прекращение выработки белков или их выпуск в недостаточном количестве способны привести к тяжелым заболеваниям.

Восстанавливаются ли нервные клетки

При нормальном состоянии организма нейроны могут жить и функционировать очень долго. К сожалению, случается так, что они начинают массово погибать. Причин разрушения нервных волокон может быть много, но до конца механизм их деструкции не изучен.

Установлено, что нервные клетки погибают из-за гипоксии (кислородное голодание). Нейронные сети рушатся при отдельных травмах головного мозга, человек теряет память или утрачивает способность к хранению информации. В этом случае сами нейроны сохранены, но теряется их передаточная функция.

Отсутствие допамина ведет к развитию болезни Паркинсона, а его переизбыток является причиной шизофрении. Почему прекращается выработка белка не известно, спусковой механизм не выявлен.

Гибель нервных клеток происходит при алкоголизации личности. Алкоголик со временем может совершенно деградировать и утратить вкус к жизни.

Формирование нервных клеток происходит при рождении. Долгое время ученые полагали, что со временем нейроны отмирают. Поэтому с возрастом человек утрачивает способность накапливать информацию, хуже соображает. Нарушение функции по выработке допамина и серотонина связывается с наличием практически у всех пожилых людей депрессивных состояний.

Гибель нейронов, действительно неизбежна, в год исчезает примерно 1 процент от их количества. Но есть и хорошие новости. Последние исследования показали, что в коре головного мозга есть особенный участок, именуемый гипокаммом. Именно в нем генерируются новые чистые нейроны. Подсчитано примерное количество генерируемых ежедневно нервных клеток – 1400.

В науке обозначилось новое понятие «нейропластичность», обозначающее возможность мозга регенерироваться и перестраиваться. Но есть одна тонкость: новые нейроны еще не имеют никакого опыта и наработанных связей. Поэтому с возрастом или после заболевания мозг нужно тренировать, как и все иные мышцы тела: получать новые знания, анализировать происходящие события и явления.

Подобно тому, как мы усиливаем бицепс при помощи гантели, активизировать процесс включения новых нервных клеток можно следующими способами:

  • изучение новых сфер знаний, которые ранее были не нужны или не интересны. К примеру, математику можно начать изучать живопись, а юристу – основы физики.
  • через постановку сложных задач и поиск их решения;
  • составлением планов деятельности, которые включают в себя множество исходных данных.

Механизм возрождения прост. У нас имеются совершенно не задействованные новые клетки, которые нужно заставить работать, а сделать это можно лишь путем постановки новых задач и изучения неизвестных предметных сфер.

  Вся информация взята из открытых источников.

Если вы считаете, что ваши авторские права нарушены, пожалуйста,
напишите в чате на этом сайте, приложив скан документа подтверждающего ваше право.
Мы убедимся в этом и сразу снимем публикацию.

В последнее десятилетие ХХ века в науке о запахах произошла подлинная революция. Решающую роль сыграло открытие 1000 видов обонятельных рецепторов, связывающих молекулы пахучих веществ. Однако механизм передачи обонятельного сигнала в центральную нервную систему таит в себе еще много загадок.

Наука и жизнь // Иллюстрации

Пути передачи информации о запахах в головной мозг.

Схематическое изображение обонятельного эпителия. Базальные клетки являются клетками-предшественниками обонятельных рецепторных нейронов.

Изображение реснички обонятельного нейрона, сделанное с помощью флуоресцентного красителя. На мембране ресничек расположены рецепторные белки, взаимодействующие с молекулами одорантов.

Модель молекулы обонятельного рецепторного белка мыши, к которому присоединена молекула одоранта — гексанола (пурпурного цвета).

Одна из моделей процесса преобразования сигнала внутри реснички обонятельного нейрона.

Схематическое изображение комбинаторных рецепторных кодов одорантов.

Электроольфактограмма (ЭОГ) — электрический колебательный сигнал, регистрируемый специальным электродом с участка внешней поверхности обонятельного эпителия крысы.

Чуть более четверти века назад в журнале «Наука и жизнь» (№ 1, 1978 г.) была опубликована статья «Загадка запаха». Ее автор, кандидат химических наук Г. Шульпин, справедливо отмечал, что современное ему состояние науки о запахах примерно такое же, как состояние органической химии в 1835 году. Тогда один из зачинателей этой науки, Ф. Велер, писал, что органическая химия представляется ему дремучим лесом, из которого невозможно выбраться. Но уже через четверть века А. М. Бутлеров, создав теорию химического строения вещества, сумел «выбраться из чащи». Шульпин выражал уверенность, что загадка запаха будет решена едва ли не быстрее, чем в случае органической химии.

И он оказался прав на все 100%! В последнее время произошел настоящий прорыв в понимании молекулярных основ обоняния. Разберем основные стадии восприятия запахов в свете современных представлений.

КАК ВОСПРИНИМАЕТСЯ ЗАПАХ

Проделаем простой опыт. Возьмем флакон с пахучей жидкостью, например духами, откроем пробку и понюхаем содержимое в спокойном ритме дыхания. Легко обнаружить, что мы ощущаем запах только во время вдоха; начинается выдох — запах исчезает.

При вдохе через нос воздух вместе с молекулами пахучего вещества (называемого обонятельным стимулом или одорантом) проходит в каждой из двух носовых полостей по щелевидному каналу сложной конфигурации, который образован продольной носовой перегородкой и тремя носовыми раковинами. Здесь воздух очищается от пыли, увлажняется и нагревается. Затем часть воздуха поступает в расположенную в верхней задней зоне канала обонятельную область, имеющую вид щели, покрытой обонятельным эпителием.

Общая поверхность, занимаемая эпителием в обеих половинках носа взрослого человека, невелика — 2 — 4 см2 (у кролика эта величина равна 7-10 см2, у собак — 27 — 200 см2). Эпителий покрыт слоем обонятельной слизи и содержит три типа первичных клеток: обонятельные рецепторы, опорные и базальные клетки. Влекомые воздухом пахучие молекулы проникают в носовую полость и переносятся над поверхностью эпителия. При нормальном спокойном дыхании вблизи обонятельного эпителия проходит 7 -10% вдыхаемого воздуха. Обонятельный эпителий имеет толщину приблизительно 150-300 мкм. Он покрыт слоем слизи (10-50 мкм), который молекулам одоранта предстоит преодолеть, прежде чем они провзаимодействуют со специальными сенсорными нейронами — обонятельными рецепторами.

Основная функция обонятельного рецептора состоит в выделении, кодировании и передаче информации об интенсивности, качестве и продолжительности запаха в обонятельную луковицу и специальным центрам в головном мозге. Эпителий в обеих носовых полостях у человека содержит приблизительно 10 млн обонятельных нейронов ( у кролика — около 100 млн, а у немецкой овчарки — до 225 млн).

Как известно, нейрон состоит из тела и отростков: аксонов и дендритов. Нервный импульс с одной нервной клетки на другую передается с аксона на дендрит. Диаметр утолщенной центральной части обонятельного нейрона (сомы) 5-10 мкм. Дендритная часть в виде волокнистых отростков диаметром 1-2 мкм выходит к внешней поверхности эпителия. Здесь дендриты заканчиваются утолщением, от которого отходит пучок из 6-12 ресничек (цилий) диаметром 0,2-0,3 мкм и длиной до 200 мкм, погруженный внутрь слоя слизи (у кролика число ресничек в одном рецепторном нейроне составляет 30-60, а у собак достигает 100-150). Отходящее от сомы нервное волокно (аксон) имеет диаметр около 0,2 мкм и выходит к внутренней поверхности эпителия. Здесь аксоны от соседних нейронов объединяются в жгуты (филы), доходящие до обонятельной луковицы.

СЕМИОТИКА ОБОНЯНИЯ

Для того чтобы обонятельный сигнал был воспринят нейроном, молекула одоранта связывается со специальной белковой структурой, расположен ной в нейрональной клеточной мембране. Такая структура называется рецепторным белком. Используя методы молекулярной биологии, американские ученые Линда Бак и Ричард Аксель в 1991 году установили, что обонятельные нейроны у млекопитающих содержат около 1000 различных видов рецепторных белков (у человека их меньше — около 350). Признанием важности этого открытия стало присуждение им в 2004 году Нобелевской премии за исследования в области физиологии и медицины (см. «Наука и жизнь» № 12, 2004 г).

Каким образом рецепторы распределяются по нейронам: имеются ли отдельные представители этого семейства во всех обонятельных нейронах или каждый нейрон несет на своей мембране только один вид рецепторного белка? Как может мозг определить, какой из 1000 типов рецепторов подал сигнал? Имеющиеся данные позволяют сделать заключение о том, что на одном нейроне присутствует только обонятельный рецепторный белок одного вида. Нейроны с разными рецепторами обладают различной функциональностью, то есть в эпителии имеются тысячи различных типов нейронов. В этом случае проблема идентификации активированного запахом отдельного рецептора сводится к задаче выявления подавшего сигнал нейрона.

Принимая во внимание, что общее число обонятельных нейронов у человека около 10 млн, число обонятельных рецепторов одного типа исчисляется в среднем десятками тысяч.

Обонятельная система использует комбинаторную схему для идентификации одорантов и кодирования сигнала. Согласно ей один тип обонятельных рецепторов активируется множеством одорантов и один одорант активирует множество типов рецепторов. Различные одоранты кодируются различными комбинациями обонятельных рецепторов, причем увеличение концентрации стимула приводит к возрастанию числа активируемых рецепторов и к усложнению его рецепторного кода. В этой схеме каждый рецептор выступает в качестве одного из компонентов комбинаторного рецепторного кода для многих одорантов и как бы выполняет роль буквы своеобразного алфавита, из совокупности которых составляются соответствующие слова-запахи.

Минимальные структурные отличия молекул одорантов, например, по функциональной группе, по длине углеродной цепи, по пространственной структуре приводят к различному рецепторному коду. Для отличительного признака молекулы одоранта, способного изменить кодировку запаха, был предложен термин «одотоп» (odotope), или детерминант запаха. Различные обонятельные рецепторы, которые распознают один и тот же одорант, могут идентифицировать различные его признаки-одотопы. Одиночный обонятельный рецептор способен «различать» молекулы, отличающиеся длиной углеродной цепочки всего лишь на один атом углерода, или молекулы, имеющие одинаковую длину углеродной цепочки, но отличающиеся функциональной группой. Учитывая, что в эпителии млекопитающих имеется приблизительно 1000 видов обонятельных рецепторов, можно полагать, что такая комбинаторная схема позволяет различить громадное число одорантов (даже человек различает до 10 000 запахов).

Полученные в последнее время результаты экспериментальных исследований свойств обонятельных рецепторных белков позволили создать на молекулярном уровне структурную модель спиральной молекулы обонятельного белка. Обонятельные рецепторные белки принадлежат к суперсемейству мембранносвязанных рецепторов. Они пересекают двухслойную липидную мембрану реснички семь раз. У содержащей 300-350 аминокислот молекулы рецепторного белка три наружные петли соединяются с тремя внутриклеточными петлями семью пересекающими мембрану трансмембранными участками.

НЕОБХОДИМАЯ СЛИЗЬ

Находящиеся в потоке воздуха молекулы одоранта, перед тем как достичь обонятельных рецепторных нейронов, должны пересечь обволакива ющий поверхность обонятельного эпителия слой слизи. Физиологические функции слоя слизи полностью до сих пор не выяснены. Не вызывает сомнения, что она создает гидрофильную оболочку для чувствительных и хрупких обонятельных рецепторов, выполняя защитную функцию. Ведь систему восприятия сигнала нужно защитить от воздействия внешней среды, то есть от молекул одорантов, среди которых могут быть достаточно опасные и химически активные вещества.

Слой слизи состоит из двух подслоев. Внешний, водный, имеет толщину примерно 5 мкм, а внутренний, более вязкий, — около 30 мкм. Реснички-цилии направлены наклонно к внешней поверхности слоя слизи. Они образуют своего рода сетку с нерегулярными ячейками, причем эта сетка размещена у поверхности раздела подслоев так, что основная часть поверхности ресничек (около 85%) оказывается расположен ной вблизи границы раздела.

Слой слизи содержит разнообразные растворимые в воде белки, значительную часть которых составляют так называемые гликопротеины. Благодаря разветвленной молекулярной структуре эти белки способны связывать и удерживать молекулы воды, образуя гель.

Другие виды белков, содержащихся в слизи, взаимодействуют с молекулами одорантов и тем самым могут оказывать влияние на восприятие и распознавание запахов. Эти белки подразделяются на два основных класса — одорант-связующие белки (OBP) и одорант-разрушающие ферменты.

ОВР относятся к семейству белков, имеющих складчатую бочкообразную структуру с внутренней глубокой полостью, в которую попадают маленькие молекулы гидрофильных (жирорастворимых) одорантов. Разные подвиды этих белков отличаются высокой избирательностью взаимодействия с одорантами различных химических классов.

Полагают, что OBP способствуют растворению одоранта и транспортируют его молекулы сквозь слой слизи, действуют как фильтр для разделения одорантов, могут облегчать связывание одоранта с рецепторным белком и даже очищать околорецепторное пространство от ненужных компонентов.

Кроме одорант-связующих белков в слизи обонятельного эпителия вблизи рецепторных нейронов обнаружены несколько видов одорант-разрушающих ферментов. Все эти ферменты запускают реакции превращения молекул одорантов в другие соединения. Образующиеся в результате этих реакций продукты также вносят свой вклад в восприятие запаха. В конечном итоге все поступающие в слой слизи молекулы одорантов быстро, практически одновременно с завершением вдоха, теряют свою «запаховую» активность. Так что обонятельная система при каждом вдохе получает новую информацию от свежих порций одоранта.

ОБОНЯНИЕ НА УРОВНЕ МОЛЕКУЛ

Многие свойства системы восприятия запахов можно объяснить на молекулярном уровне. Молекула одоранта встречает на поверхности слизи, покрывающей обонятельный эпителий, молекулу одорант-связующего белка, которая связывает и переносит молекулу одоранта через слой слизи к поверхности реснички обонятельного нейрона. В ресничках осуществляется основной процесс передачи обонятельного сигнала. Его механизм достаточно типичен для многих видов взаимодействий физиологически активных веществ с рецепторами нервных клеток.

Молекула одоранта прикрепляется к определенному обонятельному рецептору (R). Между
процессом связывания молекулы одоранта с рецептором и передачей обонятельного
сигнала в нервную систему лежит сложный каскад биохимических реакций, проходящих
в нейроне. Связывание молекулы одоранта с рецепторным белком активирует так называемый
G-белок, расположенный на внутренней стороне клеточной мембраны. G-белок в свою
очередь активирует аденилатциклазу (AC) — фермент, преобразующий внутриклеточный
аденозинтрифосфат (ATP) в циклический аденозинмонофосфат (cAMP). А уже cAMP активирует
другой мембранносвязанный белок, который называется ионным каналом, поскольку
открывает и закрывает вход заряженным частицам внутрь клетки. Когда ионный канал
открыт, в клетку проникают катионы металлов. Таким способом меняется электрический
потенциал клеточной мембраны и генерируется электрический импульс, передающий
сигнал с одного нейрона на другой.

Несколько молекулярных стадий передачи внутриклеточного сигнала обеспечивают его усиление, в результате чего небольшого числа молекул одоранта становится достаточно для генерирования нейроном электрического импульса. Такие усилительные каскады обеспечивают большую чувствительность системы восприятия запахов.

Итак, активация рецепторного белка молекулой одоранта в конечном счете приводит к генерированию электрического тока в обонятельном рецепторном нейроне. Ток распространяется по дендриту нейрона в его соматическую часть, где возбуждает выходной электрический импульс. Этот импульс передается по нейрональному аксону в обонятельную луковицу.

Одиночный электрический сигнал-импульс на выходе имеет длительность не более 5 мс и пиковую амплитуду около 100 мкВ. Почти все нейроны генерируют импульсы и при отсутствии воздействия одоранта, то есть обладают спонтанной активностью, называемой биологическим шумом. Частота этих импульсов меняется в диапазоне от 0,07 до 1,8 импульса в секунду.

ЛУКОВИЧНАЯ НЕЙРОСЕТЬ

Обонятельные рецепторные нейроны распознают громадное число разнообразных молекул пахучих веществ и посылают информацию о них через аксоны в обонятельную луковицу, служащую первым центром обработки обонятельной информации в головном мозге. Парные обонятельные луковицы представляют собой продолговатые образования «на ножках». Отсюда начинается путь обонятельного сигнала к полушариям мозга. Аксоны обонятельных нейронов оканчиваются в обонятельной луковице разветвлениями в сферических концентраторах (диаметром 100-200 мкм), называемых гломерулами. В гломерулах осуществляется контакт между окончаниями аксонов обонятельных нейронов и дендритами нейронов второго порядка, которыми являются митральные и пучковые клетки.

Митральные клетки — самые крупные нервные клетки, выходящие из обонятельной луковицы. Пучковые клетки меньше митральных, но функционально с ними схожи. Представление о количестве нервных клеток у млекопитающих могут дать характеристики обонятельной системы кролика. В ней имеется по 50 миллионов обонятельных рецепторных нейронов справа и слева (ровно в десять раз больше, чем у человека). Аксоны обонятельных рецепторов распределены между 1900 гломерулами обонятельной луковицы — примерно по 26 000 аксонов на гломерулу. Дендритные окончания 45 000 митральных и 130 000 пучковых клеток получают сигналы от аксонов в гломерулах и передают их из обонятельной луковицы в центры обоняния в головном мозге. Около 24 митральных и 70 пучковых клеток получают информацию от аксонов в каждой гломеруле. У человека около 10 млн аксонов обонятельных нейронов распределяются по 2000 гломерул обонятельной луковицы.

Все аксоны одной популяции обонятельных нейронов сходятся на две гломерулы, зеркально расположенные по разные стороны двумерного поверхностного слоя обонятельной луковицы. В зависимости от содержания передаваемого сигнала гломерулы активируются различным образом. Совокупность активированных гломерул называется картой запаха и представляет своего рода «слепок» запаха, то есть она показывает, из каких пахучих веществ состоит воспринимаемый обонятельный объект.

Механизм активации гломерул до сих пор не выяснен. Усилия исследователей направлены на то, чтобы выяснить, каким образом многообразие одорантов воспроизводится в двумерном слое гломерул на поверхности обонятельной луковицы. Кстати, эти отображения имеют динамический характер — они постоянно меняются в ходе восприятия запаха, усложняя научную задачу.

Обонятельная луковица — это большая многослойная нейросеть для пространственно-временнoй обработки отображения запаха в гломерулах. Ее можно рассматривать как совокупность множества микросхем с большим количеством связей, со взаимной активацией и ингибированием активности нейронов. Выполняемые нейронами операции выделяют характерные свойства карты запаха.

От обонятельной луковицы аксоны митральных и пучковых клеток передают информацию в первичные обонятельные участки коры головного мозга, а затем в высшие ее участки, где формируется осознанное ощущение запаха, и в лимбическую систему, которая порождает эмоциональную и мотивационную реакцию на обонятельный сигнал.

Свойства обонятельных зон коры головного мозга позволяют формировать ассоциативную память, которая устанавливает связь нового аромата с отпечатками воспринятых ранее обонятельных стимулов. Полагают, что процесс идентификации одоранта включает сравнение получающегося отображения с его описанием в семантической памяти. В случае совпадения отпечатка и памяти о запахе происходит какой-либо ответ (эмоциональный, двигательный) организма. Процесс этот осуществляется очень быстро, в течение секунды, и информация о совпадении после ответа сразу сбрасывается, поскольку мозг готовит себя к решению следующей задачи восприятия запаха.

ЗАГАДКИ ЗАПАХОВ

То, о чем говорилось в предыдущих разделах, относится пусть к самому сложному,
основополагающему, но начальному разделу науки о запахах — к их восприятию. Не
раскрыт механизм взаимодействия обоняния с другими системами восприятия, например
со вкусом (см. «Наука и жизнь» № 8, 2003 г., с. 16-20). Ведь известно, что если
человеку зажать ноздри, то при дегустации даже хорошо известных вкусовых пищевых
продуктов (например — кофе) он не в состоянии точно определить, что он пробовал.
Достаточно разжать ноздри — и вкусовые ощущения восстанавливаются.

С молекулярной точки зрения пока непонятно, в каких единицах измерять интенсивность запаха и от чего она зависит, что такое качество запаха, его «букет», чем отличается один запах от другого и как охарактеризовать это отличие, что происходит с запахом при смешивании различных одорантов. Оказывается, что независимо от вида одорантов и уровня подготовленности даже опытный эксперт не может определить все составляющие смесь компоненты, если их больше трех. Если же смесь содержит более десяти одорантов, то человек не в состоянии идентифицировать ни одного из них.

Остается еще множество вопросов, касающихся механизмов и видов воздействия запахов на эмоциональное, психическое и физическое состояния человека. В последнее время на эту тему появилось немало спекуляций, чему поспособствовал вышедший в 1985 году роман П. Зюскинда «Парфюмер», более восьми лет прочно занимавший место в первой десятке бестселлеров на западном книжном рынке. Фантазии на тему чрезвычайной силы подсознательного воздействия ароматов на эмоциональное состояние человека обеспечили этому произведению огромный успех.

Однако художественный вымысел постепенно получает обоснование. Недавно в периодической печати появились сообщения о том, что американские военные «парфюмеры» разработали на редкость дурно пахнущую бомбу, способную не только вызвать отвращение, но и разогнать солдат противника или агрессивно настроенную толпу.

Общественные аллюзии на парфюмерные темы подстегнули всеобщий интерес к искусству ароматерапии. Расширилось использование ароматов в общественных местах, таких, как офисы, торговые залы, холлы гостиниц. Появились даже специальным образом ароматизированные товары, улучшающие настроение. Возникла такая отрасль рыночной экономики, как аромамаркетинг — «наука» о привлечении клиентов с помощью приятных запахов. Так, запах кожи навевает покупателю мысли о дорогом качественном товаре, аромат кофе побуждает к покупкам для домашнего ужина и т.д. Каким образом запахи формируют в головном мозге сигналы, побуждающие человека совершать покупки? Ученым предстоит совершить еще немало открытий, прежде чем ответить на этот и многие другие вопросы и отделить мифы о запахах от реальности.

Литература

Лозовская Е., канд. физ.-мат. наук. Штрих-код запаха // Наука и жизнь, 2004, № 12.

Майоров В. А. Запахи: их восприятие, воздействие, устранение. — М.: Мир, 2006.

Марголина А., канд. биол. наук. Сладкая власть феромонов // Наука и жизнь, 2005, № 7.

Шульпин Г., канд. хим. наук. Загадка запаха // Наука и жизнь, 1978, № 1.

В нейроне генерируется и по аксону посылается потенциал действия, который затем передается на синапс посредством выделения нейротрансмиттеров, вызывающих ответную реакцию в другом нейроне или эффекторной клетке (например, мышечные клетки, большинство экзокринных и эндокринных клеток). Нейротрансмиттеры позволяют нейронам общаться друг с другом. Высвобождающиеся нейротрансмиттеры связываются с рецепторами другого нейрона. Нейроны, которые выделяют нейротрансмиттеры, называются пресинаптическими нейронами. Нейроны, которые получают нейротрансмиттерные сигналы, называются постсинаптическими нейронами. В зависимости от типа нейротрансмиттера и рецептора, сигнал может или активировать, или тормозить воспринимающую клетку. Другие факторы, в том числе лекарства и расстройства, влияют на связь между нейронами, модулируя выработку и действие нейротрансмиттеров, в том числе

  • Их высвобождение, обратный захват и распад

  • Количество и функция постсинаптических нейромедиаторных рецепторов

Иногда сигналы между нейронами проходят в обратном направлении (так называемая ретроградная нейротрансмиссия). В таких случаях дендриты (приемные ветви нейрона) постсинаптических нейронов высвобождают нейротрансмиттеры, которые влияют на рецепторы пресинаптических нейронов. Ретроградная передача может препятствовать высвобождению дополнительных нейротрансмиттеров пресинаптическими нейронами и помочь контролировать уровень активности и связи между нейронами.

Межклеточные взаимодействия в центральной нервной системе (ЦНС) очень сложны. Импульс от одного нейрона к другому может проходить от

  • аксона к телу клетки

  • аксона к дендриту

  • тела клетки к телу клетки

  • дендрита к дендриту

Нейрон воспринимает одновременно огромное количество импульсов – как возбуждающих, так и тормозящих – от других нейронов, и эти сигналы объединяет в различные паттерны разрядов.

Проведение потенциала действия по аксону имеет электрическую природу и вызвано переходом ионов натрия и калия через мембрану аксона. Отдельный нейрон генерирует однотипные сигналы после каждого стимула, проводя их с фиксированной скоростью по аксону. Скорость проведения зависит от диаметра аксона и степени его миелинизации и составляет от 1–4 м/секунду для малых немиелинизированных волокон до 75 м/секунду в крупных миелинизированных. Распространение импульса происходит с намного большей скоростью в миелинизированных волокнах, поскольку по ходу миелиновой оболочки с равной частотой располагаются промежутки (перехваты Ранвье), где обнажается мембрана аксона. Электрический импульс «перепрыгивает» с одного перехвата к другому, пропуская миелинизированный участок аксона. Вследствие этого при заболеваниях, нарушающих миелиновую оболочку (например, рассеянный склероз Рассеянный склероз (РС) Рассеянный склероз (РС) характеризуется появлением в головном и спинном мозге диссеминированных очагов демиелинизации. Характерные симптомы включают зрительные и глазодвигательные нарушения… Прочитайте дополнительные сведения Рассеянный склероз (РС) ), синдром Гийена-Барре Синдром Гийена-Барре (СГБ) Синдром Гийена – Барре – это острая, обычно быстро прогрессирующая воспалительная полинейропатия, характеризующаяся мышечной слабостью и умеренным выпадением дистальной чувствительности и самоограничивающимся… Прочитайте дополнительные сведения , происходит изменение скорости проведения по волокну, что приводит к развитию различной неврологической симптоматики.

Передача импульса имеет химическую природу и вызывается высвобождением определенных нейромедиаторов из нервного окончания. Медиаторы диффундируют через синаптическую щель и на короткое время связываются со специфическими рецепторами на эффекторной клетке. В зависимости от рецептора результатом взаимодействия может быть как возбуждение, так и торможение. Обычно нейроны не касаются друг друга; вместо этого они общаются посредством трансмиссии нейромедиаторов через синапсы. При некоторых условиях нейроны рядом друг с другом могут общаться с помощью электрических импульсов через щелевое соединение.

В теле нейрона вырабатываются ферменты, синтезирующие большинство медиаторов, которые затем хранятся в везикулах нервного окончания (см. рисунок Нейротрансмиссия Нейротрансмиссия Нейротрансмиссия ). Количество медиаторов в одной везикуле (обычно порядка нескольких тысяч молекул) называют квантом. Потенциал действия, достигнув нервного окончания, вызывает открытие кальциевых каналов; ток кальция внутрь вызывает высвобождение нейротрансмиттеров из везикул посредством слияния мембран последних с мембраной нервного окончания. В результате этого молекулы медиаторов попадают в синаптическую щель (экзоцитоз).

Один из подвидов синапсов, электрический синапс, не включает высвобождение нейромедиаторов; цитоплазмы пре- и постсинаптического нейронов непосредственно связывают ионные каналы. Эта разновидность соединения является наиболее быстрой.

Возбуждающие и тормозящие импульсы

Реакция, вызванная высвобождением нейротрансмиттера, может либо возбуждать или активировать постсинаптический нейрон, либо ингибировать или блокировать его активность. Постсинаптические нейроны получают множественные нейромедиаторные и электрические сигналы от многих нейронов. Принимающий нейрон в конечном итоге складывает входящие данные вместе, и, если поступает больше возбуждающих сигналов, нейрон «выстреливает» и посылает сигналы другим нейронам. Если сумма сигналов является ингибирующей, нейрон не «выстреливает» и не оказывает влияния на активность других нейронов. Это сочетание реакций называется суммированием. Нейротрансмиттеры, таким образом, способствуют быстрой связи между нейронами, изменяя возбуждение потенциала действия.

Другие формы суммирования включают

  • Пространственная суммация: когда нейрон получает несколько импульсов в разных местах, он затем их суммирует

  • Временное суммирование: когда импульсы получены в течение короткого периода времени, а затем суммируются

Чтобы нейрон генерировал сигнал и выстрелил, он должен достичь порогового потенциала. Пороговый потенциал создается за счет чистого увеличения притока натрия в клетку во время обмена ионов натрия и калия. Когда в клетку поступает достаточное количество натрия, достигается пороговая величина; при достижении пороговой величины срабатывает потенциал действия; он движется вдоль мембраны нейрона. Порог должен быть достигнут для создания потенциала действия.

Нейротрансмиссия

Потенциалы действия открывают аксональные кальциевые каналы (не показано). Ca++ активирует высвобождение нейромедиаторов (НМ) из везикул. НМ заполняют синаптическую щель. Некоторые из них связываются с постсинаптическими рецепторами, вызывая ответную реакцию. Остальные подвергаются обратному захвату в аксон, где накапливаются, или диффундируют в окружающие ткани.

Количество нейромедиаторов в нервном окончании не зависит от активности нейрона и сохраняется относительно постоянным благодаря непрерывной модификации процессов захвата предшественников нейромедиатора и активности ферментов, синтезирующих и разрушающих нейромедиатор. Стимуляция пресинаптических рецепторов может уменьшить пресинаптический синтез нейромедиатора, а их блокада может его увеличить.

Взаимодействие нейромедиатора с рецептором для окончания продолжающегося действия трансмиттера и/или с целью обеспечения быстрой повторной активации рецепторов должно быть достаточно коротким. После связывания нейротрансмиттеров с рецепторами возможен один из следующих вариантов:

  • С целью повторного использования или уничтожения нейромедиаторы быстро захватываются обратно в пресинаптическое нервное окончание активным АТФ-зависимым транспортом (обратный захват).

  • Они могут быть устранены ферментами вблизи рецепторов.

  • Нейротрансмиттеры диффундируют в окружающие ткани.

При обратном захвате нейромедиаторов нервными окончаниями происходит их накопление в гранулах или везикулах на концевых участках аксонов – для повторного высвобождения.

Нарушение этих процессов может привести к клиническому заболеванию. Например, считается, что потеря памяти при болезни Альцгеймера связана с недостаточностью нейротрансмиттера ацетилхолина в синапсах, что способствует закладыванию новых воспоминаний. Некоторые лекарства (например, донепезил, галантамин, ривастигмин) блокируют фермент ацетилхолинэстеразу (которая расщепляет ацетилхолин) и, таким образом, увеличивают количество ацетилхолина в синапсе. В результате может улучшиться функция памяти.

Некоторые типы отдельных нейронов могут выделять два или более различных нейротрансмиттеров (называемых котрансмиссией) — например, ацетилхолин и глутамат. Множество нейротрансмиттеров могут воздействовать на один постсинаптический нейрон или влиять на множество постсинаптических нейронов. Котрансмиссия позволяет осуществлять сложную связь между нейронами для контроля различных событий в ЦНС и периферической нервной системе (ПНС).

Нейротрансмиттеры могут также способствовать более длительным изменениям, которые включают дополнительные пути, например, изменения активности генов и белков.

Рецепторы к нейромедиаторам представляют собой белковые комплексы, расположенные на клеточной мембране. Именно от их природы зависит, будет ли влияние отдельно взятого нейромедиатора возбуждающим или тормозным. В случае если рецепторы постоянно стимулируются медиаторами или определенными препаратами, их чувствительность снижается; те рецепторы, которые не стимулируются нейромедиаторами или при их хронической медикаментозной блокаде, они становятся сверхчувствительными (открытые рецепторы). Указанные процессы сильно влияют на развитие толерантности и физической зависимости. Особую значимость эти принципы приобретают в случаях трансплантации органов или тканей, при которой денервация лишает рецепторы возможности связываться с нейромедиаторами; в результате трансплантированные органы могут стать чрезмерно чувствительными к нервной стимуляции. Синдром отмены частично можно объяснить феноменом «рикошета» из-за измененной аффинности или плотности рецепторов.

Большинство нейромедиаторов взаимодействуют с постсинаптическими рецепторами, однако некоторые рецепторы расположены на пресинаптических нейронах, обеспечивая точное регулирование высвобождения нейротрансмиттера.

Одна из групп рецепторов, называемая ионотропными рецепторами (например, рецепторы N-метил-D-глутамата, каината, ацетилхолина, глицина и гамма-аминомасляной кислоты [ГАМК]), состоит из ионных каналов, которые открываются при связывании с нейромедиатором, приводя к возникновению быстрого ответа. В другой группе метаботропные рецепторы (например, рецепторы к серотонину, альфа- и бета-адренорецепторы, допаминергические рецепторы), нейромедиаторы взаимодействуют с G-белком и активируют молекулу-посредник (вторичный «мессенджер», например, цАМФ), являющийся катализатором целого каскада реакций, реализующихся посредством фосфорилизации белков и/или мобилизации ионов кальция; изменения, происходящие в клетке под воздействием вторичных молекул-посредников, медленнее, чем в 1-ой группе рецепторов, однако они позволяют обеспечить более точную регуляцию быстрого ионотропного ответа. Большинство медиаторов активируют специфичные им рецепторы, меньшая часть – вторичные мессенджеры.

По крайней мере 100 молекул могут выступать в роли нейромедиаторов; из них 18 имеют первостепенное значение. Некоторые встречаются в различных формах. Нейротрансмиттеры могут быть сгруппированы в разные классы, такие как

  • Небольшие молекулы (например, глутамат, гамма-аминомасляная кислота, глицин, аденозин, ацетилхолин, серотонин, гистамин, норадреналин)

  • Нейропептиды (например, эндорфины)

  • Газообразные молекулы (например, оксид азота, оксид углерода)

  • Эндоканнабиноиды

Эти аминокислоты (глутамат и аспартат) являются основными возбуждающими нейромедиаторами в ЦНС. Их обнаруживают в коре головного мозга, мозжечке и спинном мозге. В ответ на воздействие глутамата в нейронах повышается синтез оксида азота (NO). Избыточная концентрация глутамата может оказывать токсическое действие, повышая уровень внутриклеточного кальция, свободных радикалов и активность протеиназ. Эти нейромедиаторы участвуют в развитии толерантности к опиоидам и опосредуют развитие гипералгезии.

Глутаматные рецепторы (стимулируемые глутаматом и менее сильно аспартатом) классифицируются как NMDA (N-метил-d-аспартат) и не-NMDA рецепторы. Фенциклидин (ФЦД, также известный под названием «ангельская пыль» [в РФ не зарегистрирован]) и мемантин (применяемый в лечении болезни Альцгеймера) связываются с рецепторами NMDA.

Гамма-аминобутировая кислота (ГАМК) – основной тормозной нейромедиатор в мозге. Это аминокислота, синтезируемая из глутаминовой кислоты посредством декарбоксилирования глутаматдекарбоксилазой. После взаимодействия с рецепторами ГАМК активно захватывается обратно в нервные окончания и метаболизируется. Глицин, который по действию напоминает ГАМК, встречается преимущественно во вставочных нейронах (клетки Реншоу) спинного мозга и в нейронных цепях, расслабляющих мышцы-антагонисты.

Разделяют GABA-A (активирующие хлорные каналы) и GABA-B (активирующие образование цАМФ) рецепторы. GABA-A-рецепторы являются точкой приложения для нескольких нейроактивных препаратов, включая бензодиазепины, барбитураты, пикротоксин и мусцимол. Алкоголь также связывается с рецепторами ГАМК-А (GABA-A). GABA-B-рецепторы активируются баклофеном, используемым при лечении мышечного спазма.

Серотонин (5-гидрокситриптамин, или 5-НТ) синтезируется в ядре шва и нейронах средней линии моста и верхней части ствола мозга. Триптофан гидроксилируется гидроксилазой триптофана до 5-гидрокситриптофана, затем декарбоксилируется с образованием серотонина. Уровень серотонина регулируется интенсивностью захвата триптофана и внутриклеточной концентрацией фермента моноаминооксидазы (МАО), которая разрушает серотонин. В конечном итоге серотонин выводится с мочой в виде 5-гидроксииндоацетиловой кислоты, или 5-ГИАК.

Серотонинергические (5-НТ) рецепторы, которых на сегодня насчитывается по крайней мере 15 подтипов, подразделяют на 5-HT1 (4 подтипа), 5-HT2 и 5-HT3. Селективные агонисты серотониновых рецепторов (например, суматриптан) могут купировать приступы мигрени. Селективные ингибиторы обратного захвата серотонина (СИОЗС) также использоваться для лечения нескольких психических расстройств (например, депрессии, тревоги, обсессивно-компульсивного расстройства, посттравматического стрессового расстройства).

Ацетилхолин – основной нейромедиатор мотонейронов ствола головного мозга и спинного мозга, вегетативных преганглионарных волокон, постганглионарных холинергических (парасимпатических) волокон и многих нейронов в ЦНС (например, в базальных ганглиях, двигательных отделах коры головного мозга). Ацетилхолин синтезируется из холина и ацетил-коэнзима А с участием фермента ацетилхолинтрансферазы, его действие непродолжительно из-за локального гидролиза ацетилхолинэстеразой до холина и ацетогруппы. Уровень ацетилхолина регулируется активностью фермента ацетилхолинтрансферазы и количеством захватываемого холина. При болезни Альцгеймера уровень ацетилхолина снижается.

Холинергические рецепторы подразделяются на никотиновые N1 (мозговое вещество надпочечников и ганглии вегетативной нервной системы) или N2 (скелетная мускулатура) и мускариновые M1 – M5 (широко представлены в ЦНС). M1 экспрессируются в вегетативной нервной системе, полосатом теле, коре и гиппокампе; M2 – в вегетативной нервной системе, сердце, гладких мышцах кишечной стенки, заднем мозге (ствол и варолиев мост) и мозжечке.

Дофамин взаимодействует с рецепторами ряда периферических нервных волокон, но преимущественно – с центральными нейронами (в частности, нейронами черной субстанции, среднего мозга, передней части покрышки и гипоталамуса). Аминокислота тирозин захватывается дофаминергическими нейронами и преобразуется тирозингидроксилазой в 3,4-дигидроксифенилаланин (ДОФА), который декарбоксилируется декарбоксилазой ароматических l-аминокислот с образованием дофамина. После высвобождения и взаимодействия с рецепторами оставшийся дофамин подвергается активному обратному захвату в нервное окончание. Уровень дофамина в нервных окончаниях регулируется МАО (разрушающей дофамин) и тирозингидроксилазой.

Дофаминергические рецепторы подразделяются на D1 – D5. D3 и D4 задействованы в процессы контроля мышления (уменьшая выраженность негативных симптомов шизофрении); D2-рецепторы регулируют функции экстрапирамидной системы. Однако сродство к определенному типу рецепторов не позволяет предсказать функциональный ответ (внутреннюю активность). Например, у ропинирола, имеющего высокое сродство к D3-рецепторам, внутренняя активность проявляется активацией D2-рецепторов.

Норадреналин – нейромедиатор большинства постганглионарных симпатических волокон и многих центральных нейронов (например, в голубоватом пятне ретикулярной формации ствола и гипоталамусе). Его предшественник, тирозин, преобразуется в дофамин, который гидроксилируется дофамин-бета-гидроксилазой с образованием норадреналина. После высвобождения и взаимодействия с рецепторами часть норадреналина разлагается катехол-O-метилтрансферазой (КОМТ), а остаток подвергается активному обратному захвату в нервное окончание, где он разлагается под действием МАО. Внутринейронный уровень норадреналина регулируют ферменты тирозингидроксилазы, дофамин-бета-гидроксилазы и моноаминоксидазы (МАО).

Адренергические рецепторы подразделяют на альфа-1 (постсинаптические в симпатической нервной системе), альфа-2 (пресинаптические в симпатической нервной системе и постсинаптические в головном мозге), бета-1 (в сердце) или бета-2 (в других структурах, иннервируемых симпатической нервной системой).

Эта группа соединений представляет собой опиоиды.

Эндорфины – полипептиды, которые активизируют многие центральные нейроны (например, в гипоталамусе, оливах, таламусе и голубоватом пятне). Тело клетки содержит крупномолекулярный полипептид, называемый проопиомеланокортин, предшественник альфа-, бета- и гамма-эндорфинов. Проопиомеланокортин транспортируется по аксону и расщепляется на фрагменты; один из них – это бета-эндорфин, содержащийся в нейронах, расположенных в околоводопроводном сером веществе, структурах лимбической системы и крупных катехоламинсодержащих нейронах головного мозга. После высвобождения и взаимодействия с рецепторами бета-эндорфин подвергается гидролизу пептидазами.

Энкефалины включают в себя мет-энкефалин и лей-энкефалин – это низкомолекулярные пептиды, присутствующие во многих центральных нейронах (например, в сером веществе бледного шара, таламуса, хвостатого и центрального ядер). Их предшественник проэнкефалин образуется в теле клетки, затем расщепляется специфическими пептидазами до активных пептидов. Эти вещества также определяются в спинном мозге, где они действуют как нейромедиаторы сигналов боли. Нейромедиаторы сигналов боли в заднем роге спинного мозга – глутамат и субстанция Р. Энкефалины уменьшают количество высвобождаемого нейромедиатора и гиперполяризуют (придают больший отрицательный заряд) постсинаптическую мембрану, снижая образование потенциалов действия и восприятие боли на уровне постцентральной извилины. После высвобождения и взаимодействия с пептидергическими рецепторами энкефалины гидролизируются в меньшие, неактивные пептиды и аминокислоты. По причине быстрой инактивации экзогенных энкефалинов в организме их клиническое использование невозможно. В качестве анальгетиков применяют более устойчивые молекулы (например, морфин).

Рецепторы энкефалинов-эндорфинов (опиоидные) классифицируют на мю-1 и мю-2 (влияющие на сенсорно-двигательную интеграцию и анальгезию), дельта-1 и дельта-2 (влияющие на двигательную интеграцию, познавательные функции и анальгезию) и каппа-1, каппа-2 и каппа-3 (влияющие на регуляцию водного баланса, анальгезию и потребление пищи). Сигма-рецепторы, в настоящее время классифицируемые как неопиоидные, расположены преимущественно в гиппокампе и связываются с фенилциклидином. Новые данные предполагают наличие еще многих фармакологически значимых подтипов рецепторов. Компоненты молекулы предшественника белка-рецептора могут быть перестроены в ходе синтеза рецептора с образованием нескольких вариантов рецептора (например, 27 вариантов соединения мю-опиоидного рецептора). Кроме того, 2 рецептора могут объединиться (димеризация) с образованием нового рецептора.

Динорфины – группа из 7 пептидов со сходными аминокислотными последовательностями. Наряду с энкефалинами они относятся к опиоидам.

Субстанция Р – пептид, обнаруживаемый в центральных нейронах (ножке шишковидной железы – эпифиза, черной субстанции, базальных ганглиях, продолговатом мозге и гипоталамусе) и в высоких концентрациях – в ганглиях задних корешков. Интенсивные афферентные болевые стимулы индуцируют высвобождение субстанции Р. Последняя модулирует нейрональный ответ на боль и настроение; посредством активации NK1A-рецепторов, расположенных в стволе головного мозга, она регулирует такие эффекты, как тошнота и рвота.

Оксид азота (NО) – неустойчивое газообразное соединение, которое опосредует многие нейрональные процессы. Он образуется из аргинина при участии NO синтетазы. Нейромедиаторы, вызывающие повышение внутриклеточного содержания кальция (например, субстанция Р, глутамат, ацетилхолин), стимулируют синтез NО в нейронах, экспрессирующих NO-синтетазу. NО может выполнять функцию внутриклеточного мессенджера; он может диффундировать из клетки во второй нейрон и вызывать в нем физиологические реакции (например, долговременную потенциацию – усиление определенных пре- и постсинаптических ответов как один из механизмов обучения) или увеличивать глутаматную (NMDA) рецептор-опосредованную нейротоксичность (например, при болезни Паркинсона, инсульте или болезни Альцгеймера). NO влияет на другие нейромедиаторы (например, ГАМК и ацетилхолин), изменяя приток кальция в клетки для увеличения высвобождения других нейромедиаторов.

Дополнительные газообразные нейромедиаторы включают монооксид углерода (CO) и сероводород (H2S). Эти медиаторы вырабатываются в клетках по всему телу (включая головной мозг). Эндогенный CO образуется в результате метаболизма гема и может участвовать в процессах, связанных с развитием лихорадки, воспалением, выживанием клеток и контролем расширения кровеносных сосудов. Некоторые ферменты участвуют в продукции H2S, который, как полагают, необходим для формирования и сохранения воспоминаний.

Остается не до конца изученной роль еще многих потенциальных нейромедиаторов, в том числе гистамина, вазопрессина, вазоактивного кишечного пептида, карнозина, брадикинина, холецистокинина, бомбезина, соматостатина, рилизинг-фактора адренокортикотропного гормона, нейротензина и, возможно, аденозина.

Эндоканнабиноиды — это эндогенные нейромедиаторы на основе липидов, регулирующие работу мозга, эндокринной и иммунной систем.

В результате заболеваний либо воздействия веществ, способных нарушать синтез, высвобождение, взаимодействие с рецептором, распад или обратный захват нейромедиаторов, вызывать изменения количества и аффинности рецепторов развиваются неврологические или психические симптомы и заболевания (см. таблицу Примеры заболеваний, связанных с нарушениями нейротрансмиссии Примеры заболеваний, связанных с нарушениями нейротрансмиссии Примеры заболеваний, связанных с нарушениями нейротрансмиссии ). Препараты, вмешивающиеся в процесс нейротрансмиссии, могут облегчить течение многих из этих заболеваний (например, болезнь Паркинсона, депрессии).

Понравилась статья? Поделить с друзьями:
  • Что относится к аксону нейрона
  • Что лучше домовой или максидом
  • Что леруа мерлен не работает что ли
  • Что купить для дачи в касторама
  • Что открыл леруа