From Wikipedia, the free encyclopedia
Activity at an axon terminal: Neuron A is transmitting a signal at the axon terminal to neuron B (receiving). Features: 1. Mitochondrion. 2. Synaptic vesicle with neurotransmitters. 3. Autoreceptor. 4. Synapse with neurotransmitter released (serotonin). 5.Postsynaptic receptors activated by neurotransmitter (induction of a postsynaptic potential). 6. Calcium channel. 7. Exocytosis of a vesicle. 8. Recaptured neurotransmitter.
Axon terminals (also called synaptic boutons, terminal boutons, or end-feet) are distal terminations of the telodendria (branches) of an axon. An axon, also called a nerve fiber, is a long, slender projection of a nerve cell, or neuron, that conducts electrical impulses called action potentials away from the neuron’s cell body, or soma, in order to transmit those impulses to other neurons, muscle cells or glands.
Neurons are interconnected in complex arrangements, and use electrochemical signals and neurotransmitter chemicals to transmit impulses from one neuron to the next; axon terminals are separated from neighboring neurons by a small gap called a synapse, across which impulses are sent. The axon terminal, and the neuron from which it comes, is sometimes referred to as the «presynaptic» neuron.
Nerve impulse release[edit]
Neurotransmitters are packaged into synaptic vesicles that cluster beneath the axon terminal membrane on the presynaptic side of a synapse. The axonal terminals are specialized to release the neurotransmitters of the presynaptic cell.[1] The terminals release transmitter substances into a gap called the synaptic cleft between the terminals and the dendrites of the next neuron. The information is received by the dendrite receptors of the postsynaptic cell that are connected to it. Neurons don’t touch each other, but communicate across the synapse.[2]
The neurotransmitter molecule packages (vesicles) are created within the neuron, then travel down the axon to the distal axon terminal where they sit docked. Calcium ions then trigger a biochemical cascade which results in vesicles fusing with the presynaptic membrane and releasing their contents to the synaptic cleft within 180 µs of calcium entry.[3] Triggered by the binding of the calcium ions, the synaptic vesicle proteins begin to move apart, resulting in the creation of a fusion pore. The presence of the pore allows for the release of neurotransmitter into the synaptic cleft.[4][5] The process occurring at the axon terminal is exocytosis,[6] which a cell uses to exude secretory vesicles out of the cell membrane. These membrane-bound vesicles contain soluble proteins to be secreted to the extracellular environment, as well as membrane proteins and lipids that are sent to become components of the cell membrane. Exocytosis in neuronal chemical synapses is Ca2+ triggered and serves interneuronal signalling.[7]
Mapping activity[edit]
Neuron |
---|
Dendrite Soma Axon Nucleus Node of Axon terminal Schwann cell Myelin sheath |
Wade Regehr, a Professor of Neurobiology at Harvard Medical School’s Department of Neurobiology, developed a method to physiologically see the synaptic activity that occurs in the brain. A dye alters the fluorescence properties when attached to calcium. Using fluorescence-microscopy techniques calcium levels are detected, and therefore the influx of calcium in the presynaptic neuron.[8] Regehr’s laboratory specializes in pre-synaptic calcium dynamics which occurs at the axon terminals. Regehr studies the implication of calcium Ca2+ as it affects synaptic strength.[9][self-published source?][10] By studying the physiological process and mechanisms, a further understanding is made of neurological disorders such as epilepsy, schizophrenia and major depressive disorder, as well as memory and learning.[11][12]
See also[edit]
- Endoplasmic reticulum
- Golgi apparatus
- Micelle
- Membrane nanotube
- Endocytosis
- Vesicular monoamine transporter
Further reading[edit]
- Cragg SJ, Greenfield SA (August 1997). «Differential autoreceptor control of somatodendritic and axon terminal dopamine release in substantia nigra, ventral tegmental area, and striatum». The Journal of Neuroscience. 17 (15): 5738–46. doi:10.1523/JNEUROSCI.17-15-05738.1997. PMC 6573186. PMID 9221772.
- Vaquero CF, de la Villa P (October 1999). «Localisation of the GABA(C) receptors at the axon terminal of the rod bipolar cells of the mouse retina». Neuroscience Research. 35 (1): 1–7. doi:10.1016/S0168-0102(99)00050-4. PMID 10555158. S2CID 53189471.
- Roffler-Tarlov S, Beart PM, O’Gorman S, Sidman RL (May 1979). «Neurochemical and morphological consequences of axon terminal degeneration in cerebellar deep nuclei of mice with inherited Purkinje cell degeneration». Brain Research. 168 (1): 75–95. doi:10.1016/0006-8993(79)90129-X. PMID 455087. S2CID 19618884.
- Yagi T, Kaneko A (February 1988). «The axon terminal of goldfish retinal horizontal cells: a low membrane conductance measured in solitary preparations and its implication to the signal conduction from the soma». Journal of Neurophysiology. 59 (2): 482–94. doi:10.1152/jn.1988.59.2.482. PMID 3351572.
- LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite.[13]
References[edit]
- ^ «Axon Terminal». Medical Dictionary Online. Archived from the original on 2016-03-04. Retrieved February 6, 2013.
- ^ Foster, Sally. «Axon Terminal — Synaptic Vesicle — Neurotransmitter». Retrieved February 6, 2013.
- ^ Llinás R, Steinberg IZ, Walton K (March 1981). «Relationship between presynaptic calcium current and postsynaptic potential in squid giant synapse». Biophysical Journal. 33 (3): 323–51. Bibcode:1981BpJ….33..323L. doi:10.1016/S0006-3495(81)84899-0. PMC 1327434. PMID 6261850.
- ^ Carlson, 2007, p.56
- ^ Chudler EH (November 24, 2011). «Neuroscience for kids Neurotransmitters and Neuroactive Peptides». Archived from the original on December 18, 2008. Retrieved February 6, 2013.
- ^ Rizo, Josep (2018-07-10). «Mechanism of neurotransmitter release coming into focus». Protein Science (Review). 27 (8): 1364–1391. doi:10.1002/pro.3445. ISSN 0961-8368. PMC 6153415. PMID 29893445.
Research for three decades and major recent advances have provided crucial insights into how neurotransmitters are released by Ca2+ -triggered synaptic vesicle exocytosis, leading to reconstitution of basic steps that underlie Ca2+ -dependent membrane fusion and yielding a model that assigns defined functions for central components of the release machinery.
- ^ Südhof TC, Rizo J (December 2011). «Synaptic vesicle exocytosis». Cold Spring Harbor Perspectives in Biology. 3 (12): a005637. doi:10.1101/cshperspect.a005637. PMC 3225952. PMID 22026965.
- ^
Sauber C. «Focus October 20-Neurobiology VISUALIZING THE SYNAPTIC CONNECTION». Archived from the original on 2006-09-01. Retrieved July 3, 2013. - ^
Regehr W (1999–2008). «Wade Regehr, Ph.D.» Archived from the original on February 18, 2010. Retrieved July 3, 2013. - ^ President and Fellows of Harvard College (2008). «The Neurobiology Department at Harvard Medical School». Archived from the original on 20 December 2008. Retrieved July 3, 2013.
- ^ «NINDS Announces New Javits Neuroscience Investigator Awardees» (Press release). National Institute of Neurological Disorders and Stroke. May 4, 2005. Archived from the original on January 17, 2009. Retrieved February 6, 2013.
- ^ «Scholar Awards». The McKnight Endowment Fund for Neuroscience. Archived from the original on 2004-05-08. Retrieved July 3, 2013.
- ^ Toni N, Buchs PA, Nikonenko I, Bron CR, Muller D (November 1999). «LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite». Nature. 402 (6760): 421–5. Bibcode:1999Natur.402..421T. doi:10.1038/46574. PMID 10586883. S2CID 205056308.
Предмет
Медицина
Разместил
🤓 contcounlongla1987
👍 Проверено Автор24
(греч. axon • ось; лат. terminus — конец) Окончание аксона. Достаточно часто разветвляется на несколько ветвей, которые называются телодендриями (телодендронами). Разветвление аксона на телодендрии называется арборизацией (лат. arbor — дерево). Теподендрии заканчиваются терминальными утолщениями на рабочих структурах (мышцы, железы) либо на других нервных клетках — эффекторными нервными окончаниями (см. статью в теме 11). В А.т. содержатся синаптические пузырьки, обеспечивающие передачу нервного импульса.
Еще термины по предмету «Медицина»
Анатомия «Типовая»
изучены проблемы индивидуальной изменчивости органов и систем человека. Указано на несоответствие их «нормального» расположения в зависимости от типа телосложения, возраста и имеющейся патологии. Сформулировано понятие «норма» – варьирующая совокупность морфологических признаков, границами которых являются крайние формы изменчивости; аномалия развития – результат нарушенного «извращенного» процесса развития при сохранении функции; порок развития – врожденные нарушения анатомической структуры или положения органов с выраженными нарушениями их функции.
Абражанов Александр Алексеевич
(1867—1931), крупный отечественный хирург. По окончании в 1891 г. Варшавского ун-та работал в Мариинской б-це в Петербурге, затем в заводской б-це в Юрюзани и земской б-це в Златоусте. В 1900 г. защитил в Военно-медицинской академии диссертацию на степень д-ра медицины на тему «Пересадка и пломбировка костей». С 1903 г. работал в Полтаве; с 1913 г. — в Харькове. В 1922 г. избран на кафедру факультетской хирургии Днепропетровского мед. ин-та, где работал до конца жизни. Опубликовал более 60 научных работ по хирургии, в т. ч. по пластической хирургии (заячья губа, разные виды брюшных грыж, закрытие свищей грудной и брюшной полостей), по нейрохирургии, костной хирургии, онкологии, туберкулезу, акушерству, гинекологии и общим методическим вопросам.
Гельмгольца теория аккомодации
теория физиологического механизма аккомодации глаза, согласно которой при сокращении ресничной мышцы происходит расслабление связки ресничного пояска (цинновой связки) и увеличение кривизны хрусталика.
-
Аксонный холмик Monticulus axonalis, Colliculus axonalis
-
Аксон
-
Набор терминалов
-
Аксон, Axon
-
Окончание аксона
-
Аэровокзал (air terminal)
-
Концевая (терминальная) трансфераза (terminal transferase)
-
Автоматизированная система управления контейнерным терминалом
-
Анатомия «Типовая»
-
Большие гранулярные лимфоциты, Large granular leukocytes. Син. Натуральные киллеры
-
Вторая фаза анаболическая
-
Гаммара метод
-
Гаплоидный
-
Геда области кожи
-
Гельмгольца связка
-
Гельмгольца теория аккомодации
-
Генитальное тельце Догеля, Corpusculum genitalii Dogel
-
Питание через гастростому
-
Фиброзирующие
-
Amputatio
Смотреть больше терминов
Повышай знания с онлайн-тренажером от Автор24!
- Напиши термин
- Выбери определение из предложенных или загрузи свое
-
Тренажер от Автор24 поможет тебе выучить термины с помощью удобных и приятных
карточек
В нервно-мышечном синапсе различают пресинаптическую часть (терминали аксона) и постсинаптическую зону (участок мышечного волокна). Эти два структурных образования разделены межклеточным пространством — синаптической щелью. Нервно-мышечный синапс является химическим. При его функционировании из терминали аксона выделяется медиатор ацетилхолин, который вызывает возбуждение мышечного волокна, приводящее к сокращению. В терминалях аксона находятся синаптические пузырьки диаметром 30—60 нм, содержащие ацетилхолин, а также мелкие митохондрии со светлым матриксом и немногочисленными кристами, микротрубочки и нейрофи-ламенты. Терминали аксона снаружи окружены леммоцитами, или шванновскими клетками (рис. 15 см. рис. 14). Участки терминалей, где происходит выведение медиатора, называются активными зонами. От их размера и числа зависит уровень секреции медиатора. [c.32]
Веточка аксона, подойдя к волокну, образует несколько нервных окончаний (терминалей), которые размеш аются на поверхности волокна в специальных вытянутых углублениях (бороздках) таким образом, что между мембраной терми-нали аксона и мембраной волокна вдоль всей длины терминали остается зазор в 40-50 нм — синаптическая ш ель. Терминаль аксона и углубление сарколеммы покрыты шванновской клеткой. Вся эта структура называется концевой двигательной пластинкой, нервно-мышечным синапсом или нервно-мышечным соединением. [c.227]
Терминали аксона могут оканчиваться только на определенных типах клеток в пределах терминальной области [c.250]
Общие сведения о нервной системе изложены в гл. 1. В дальнейшем мы часто будем пользоваться терминами нерв и аксон . Здесь следует напомнить, что нерв (который обычно представляет собой нервный ствол) состоит из пучка аксонов, а ганглий содержит синапсы. Проведение по нерву является исключительно аксонным, в то время как в ганглии имеют место как аксонное проведение, так и синаптическая передача. У кальмара исследование часто прово- [c.184]
Нелегко суммировать эти противоречивые исследования, в большинстве которых термин внутренний обозначает совершенно различные вещи. Ясно, что ионизированные соединения плохо проникают в мозг млекопитающих и в аксон членистоногих. Вероятно, здесь нужно считаться с двумя факторами а) плохим продвижением этих веществ через липоидное основное вещество и б) расположением части холинэстеразы внутри нейрона, где она защищена нейрональной мембраной. У членистоногих защитный слой, по-видимому, окружает аксон. Этих двух факторов достаточно, чтобы объяснить факт, что 25—40% фермента не подвержено действию ионизированных соединений. Основания с р/Са 8 и выше совершенно неожиданно [c.220]
Химическая гипотеза может быть изложена так. Импульс, приходящий по аксону, вызывает в конце терминали выделение химического вещества (так называемого медиатора, т. е. посредника), которое диффундирует через синаптическую щель и достигает мембраны к летки-мишени (так называемой постсинаптической мембраны) (рис. 40). В результате меняется проницаемость этой мембраны и возникает ток, который течет через синаптическую щель и через мембрану тела клетки. [c.157]
Итак, химическая теория торжествовала. Некоторые медиаторы, которые вначале были столь же гипотетичны, как клеточная мембрана, были выделены в чистом виде и их химическое строение было определено. С помощью микроэлектродов, введенных в клетку и аксон, было выяснено, что время, затрачиваемое на выделение медиатора из терминали и его диффузию через щель, составляет примерно 0,6—0,8 мс у теплокровных животных. [c.158]
А что будет, если волокно не расширяется, а, напротив,, сужается Повторив рассуждения о расширяющемся во- локне, так сказать, со знаком минус , легко сообразить,, что по мере приближения ПД к месту сужения его скорость должна нарастать, а амплитуда увеличиваться (рис. 44, б). Это явление оказалось очень важным — ведь к нервным волокнам вполне применима поговорка Сколько веревочке ни виться… . Всякий аксон в конце концов оканчивается, причем тонкими терминалями, получается как бы сужение до нуля . Значит, при подходе к терминали импульс все более разгоняется, его амплитуда растет. Возникает явление, похожее на гидравлический удар, когда текущая по трубе жидкость натыкается на препятствие. Возрастание амплитуды потенциала в конце терминали очень важно для работы химических синапсов, так как улучшает условия выделения медиаторов. [c.190]
Изучение развивающейся нервной системы началось в XIX веке вместе с появлением первых микроскопических n j-следований. Одним из наиболее крупных ученых в этой новой области был швейцарец Гис (W. His), работавший в то время в Лейпциге. Многие из проведенных им исследований были выполнены у него дома. Говорят, что микроскопический материал Гиса был низкого качества, однако его идеи были ясны и глубоки. В 1880-х годах он описывал аксон как вырост тела развивающейся нервной клетки, и это явилось важным шагом на пути к концепции нейрона как клетки и к разработке нейронной теории. Мы обязаны Гису также введением таких терминов, как дендрит (ветви, отходящие от тела клетки) и нейропиль (бесклеточная область, содержащая связи между аксонами и дендритами). [c.236]
Самый первый уровень — это распределение синапсов на отдельном небольшом участке сомы клетки, дендрита или терминали аксона. При этом может встретиться случай простой конвергенции (схождения) нескольких входов или случай простой дивергенции (расхождения) на несколько выходных зон. Кроме того, могут иметь место последовательные или же реципрокные взаимодействия. Во всех таких случаях данный участок выступает в качестве очень локальной интегративной единицы. Мы можем говорить об этой ситуации, как о наиболее компактном типе локальной сети или о микросети. Нередко некий тип микросети повторяется по всему данному слою или на клетках данного типа, тем самым выступая в качестве модуля для особого способа обработки информации. [c.125]
Терминали аксонов могут оканчиваться» только на определенных частях этих клеток найрнмер, на участке поверхности дендрита) [c.250]
Процессы, происходящие при поступлении импульса в нервное окончание, т.е. в пресинаптическую область, подробно описаны в предьщущей главе, здесь напомним только основные из них. При распространении нервного импульса происходит деполяризация пресинаптической мембраны л изменение ионных токов. Наиболее важным событием в нервном окончании является мобилизация ионов Са, которые вызывают миграцию и открывание многочисленных синаптических везикул. Эти везикулы непосредственно связываются с участками пресинапса и открьггие их приводит к высвобождению нейромедиатора и диффузии его в синаптическую щель. В терминали аксона сконцентрированы и ферменты синтеза медиатора, митохондрии для энергетического обеспечения этого процесса, системы белков-транспортеров, способствующих узнаванию и обратному захвату молекул нейромедиатора. Этот последний механизм, по-видимому, существенно экономит затраты на синтез готового нейромедиатора и участвует в регуляции срока его действия. [c.257]
По структуре центриоли сходны со жгутиками или более короткими образованиями — ресничками (эти термины, в сущности, синонимы), обычно находятся на поверхности клеток эукариот и являются органами движения. Неподвижные клетки тела человека также нередко имеют реснички. Например, эпителий бронхов несет 10 ресничек на 1 см Г26]. Модифицированные жгутики образуют светочувствительные рецепторы нашего глаза и рецепторы вкуса на языке. Жгутики и реснички несколько больше по диаметру (около 0,2 мкм), чем центриоли, и обладают характерной внутренней структурой они состоят из И полых микротрубочек диаметром 24 нм, организованных по схеме 9 + 2 (рис. 1-5 и 1-6). Каждая микротрубочка внешне похожа на жгутик бактерии, но существенно отличается от него по химическому составу. Базальное тельце, называемое также кинетосомой (рис. 1-5), по структуре, размерам и способу воспроизведения сходно с центриолью. Микротрубочки, подобные тем, которые входят в состав жгутиков, обнаружены также в цитоплазме клеток [27]. Они выглядят как маленькие канальцы, но действительно ли играют такую роль — неясно. Скорее всего микротрубочки выполняют опорную функцию цитоокелета . В аксоне нерва микротрубочки расположены по всей длине аксона и, вероятно, составляют часть механической системы переноса клеточных компонентов. [c.37]
Действительно, как показало серебрение, а потом и электронная микроскопия, непосредственного контакта между клетками все-таки нет клетки разделены щелью, заполненной жидкостью, через которую ток пойдет не только в клетку-мишень, но и вытечет куда-то на сторону . Расчеты, проведенные в разных лабораториях мира,, дали обескураживающие результаты. Оказалось, что при реальных экспериментально известных значениях сопротивлений мембран (которые были получены, конечно, не для области синапса, а для аксона или тела клетки), межклеточной среды и размеров синаптических контактов и щелей в клетку-мишень будет затекать не более 0,01% всего тока, вытекающего из терминали. Этот ток к тому же растечется по всему телу клетки и не сможет соэдать изменения ее потенциала, необходимого для возбуждения или сопоставимого с реально измеряемыми изменениями. [c.159]
Подобно тому как гигантский аксон кальмара является образцом] нервлого волокна, образцом нервной клетки является мотонейрон кошки (рис. 51). Эта клетка имеет относительно большие размеры (около 30 мкм) и позтому наиболее детально изучена. Мотонейрон (МН) имеет тело и дендриты, на которых расположены около 10 ООО синапсов, образованных окончаниями других нервных клеток. От тела МН отходит выходной отросток — ак-сон представляющий собой миелинизированное волокно, У его основания имеется особая структура — аксонный холмик это часть МН, имеющая мембрану с наиболее низким порогом. Аксоны МН могут быть очень длинными, например, у кошки — сантиметров 25, а у слона или жирафа — и несколько метров. В конце аксон МН разделяется на веточки — терминали, которые оканчиваются на мышечных волокнах. Кроме того, еще внутри спинного мозга, где лежат МН, аксон отдает боковые веточки (кол-латерали) которые идут к другим нервным клеткам. [c.206]
Одним из важных признаков спинальных рефлексов является то, что процесс протекает в направлении от сенсорных единиц к двигательным, но никогда не осуществляется в противоположном направлении. Шеррингтон предположил, что это происходит благодаря тому, что синапс устроен наподобие вентиля. Эта мысль согласовалась с другой — о том, что дендриты и сома нервной клетки являются рецепторными частями нейрона, на которые поступают сигналы, а аксон и его терминали — эффекторными частями, по которым сиг алы уходят. Такое представление о работе нейрона было разработано примерно в 1890 г. Кахалом и бельгийским анатомом А. Ван-Ге-гухтеном (который сразу вслед за Кахалом овладел методом Гольджи) и получило название закон динамической поляризации . Вскоре этот закон был признан следствием нейронной доктрины. Он послужил логической основой для понимания того, как отдельные нервные клетки могут объединяться в группы и в цепочки, по которым передаются нервные сигналы (А, Б на рис. 5.1). Только в последнее время, когда были проведены новые исследования по ультраструктуре и физиологии синаптической организации и потребовалось объяснить сложное синаптическое взаимодействие дендритов и аксонных терминалей, этот закон пришлось подвергнуть пересмотру. [c.106]
Первыми синапсами, которые удалось идентифицировать с помощью электронной микроскопии, были простые контакты терминалей, относимые к аксо-соматическому и аксо-дендрит-ному типам. Поскольку эти простые типы соответствовали представлению о поляризованном нейроне, их стали считать классическими синапсами. Позднее были идентифицированы аксо-аксонные и дендро-дендритные типы синапсов. Тогда же были обнаружены последовательные и реципрокные синапсы, а также различные типы специализированных синаптических контактов и терминалей. Поскольку такие синапсы, терминали и типы выходят за рамки классических представлений, то на практике простые синапсы стали называть стандартными, а все остальные — нестандартными или даже необычными . [c.120]
В опытах с перевязкой аксона показано, что везикулы, вакуоли, тубулярные структуры ЭПР транспортируются вдоль по нейрону в прямом и обратном направлениях и без включения внутрь экзогенных маркеров. Это указывает на контейнерный (в форме везикул) путь переноса макромолекул от центра к периферии и, наоборот, без трансформации веществ. Например, пероксидаза, захваченная перикарионом нейрона, попадает в эндосомы и, минуя систему ГЭРЛ, с прямым медленным аксо-током (1,5 мм/сут) переносится в терминали. Другой пример ацетилхолинэстераза, синтезируясь как белок в теле нейрона, мигрирует в терминаль с медленным аксотоком как растворимая форма фермента и с быстрым аксотоком в везикулах. [c.33]
Нервная ткань — основная ткань, формирующая нервную систему и создающая условия для реализации ее многочисленных функций. Нервная ткань имеет эктодермальное происхождение, не принято делить нервную ткань на какие-либо виды тканей. Обладает двумя основными свойствами: возбудимостью и проводимостью.
Нейрон
Структурно-функциональной единицей нервной ткани является нейрон (от др.-греч. νεῦρον — волокно, нерв) — клетка с одним
длинным отростком — аксоном (греч. axis — ось), и одним/несколькими короткими — дендритами (греч. dendros — дерево).
Спешу сообщить, что представление, будто короткий отросток нейрона — всегда дендрит, а длинный — всегда аксон, в корне неверно. С точки
зрения физиологии правильнее дать следующие определения: дендрит — отросток нейрона, по которому нервный импульс перемещается к телу нейрона, аксон — отросток нейрона, по которому импульс перемещается от тела нейрона.
Нейроны обладают 4 свойствами:
- Рецепция (лат. receptio — принятие) — способны воспринимать поступающие сигналы (дендриты)
- В ответ на сигналы способны переходить в состояние возбуждения или торможения
- Проведение возбуждения (от дендрита к телу нейрона, затем — к концу аксона)
- Передача сигнала другим объектам — нейрону или эффекторному органу
В физиологии эффекторным (от лат. efferes — выносящий) органом часто называют исполнительный орган или орган-мишень воздействия (мышцы, железы). Орган-эффектор выполняет те или иные «приказы» ЦНС (центральной нервной системы) или эндокринных желёз
Отростки нейронов проводят нервные импульсы и передают их другим нейронам, эффекторам, благодаря чему
мышцы сокращаются или расслабляются, а секреция желез усиливается или уменьшается.
Миелиновая оболочка
Нервные волокна подразделяются на миелиновые и безмиелиновые. Нервное волокно — это один или несколько отростков нейронов (могут быть как аксоны, так и дендриты) с окружающей оболочкой.
Безмиелиновые нервные волокна находятся преимущественно в составе вегетативной нервной системы (скорость проведения 1-2 м/c). Миелиновые — образуют белое вещество головного и спинного мозга, нервные волокна соматической нервной системы (5-120 м/с).
В миелиновых нервных волокнах отростки нейронов покрыты миелиновой оболочкой (на 70-75% состоит из липидов (жиров)), которая обеспечивает изолированное проведение нервного
импульса по нерву. Если бы не было миелиновой оболочки (вообразите!) нервные импульсы распространялись бы хаотично, и,
когда мы хотели сделать движение рукой, то вместе с рукой двигалась бы нога.
Существует болезнь при которой собственные антитела уничтожают миелиновую оболочку нервных волокон головного и спинного мозга (случаются и такие сбои в работе организма). Эта
болезнь — рассеянный склероз, по мере прогрессирования приводит к разрушению не только миелиновой оболочки, но и нервов — а значит,
происходит атрофия мышц и человек постепенно становится обездвиженным.
Миелиновый слой представлен несколькими слоями мембраны глиальной клетки (леммоцит, шванновская клетка), которые закручиваются вокруг осевого цилиндра (отростка нейрона). Это закручивание хорошо видно на картинке, где изображен здоровый нерв, чуть выше
Миелиновый слой оболочки волокна регулярно прерывается в местах стыка соседних леммоцитов — перехваты Ранвье. Миелиновая оболочка обеспечивает изолированное и более быстрое проведение возбуждения (сальтаторный тип, лат. salto — скачу, прыгаю).
Нейроглия (греч. νεῦρον — волокно, нерв + γλία — клей)
Вы уже убедились, насколько значимы нейроны, их высокая специализация приводит к возникновению особого окружения — нейроглии.
Нейроглия (глиальные клетки, глиоциты) — вспомогательная часть нервной системы, которая выполняет ряд важных функций:
- Опорная — поддерживает нейроны в определенном положении
- Регенераторная (лат. regeneratio — возрождение) — в случае повреждения нервных структур нейроглия способствует регенерации
- Трофическая (греч. trophe — питание) — с помощью нейроглии осуществляется питание нейронов: напрямую с кровью нейроны не контактируют
- Электроизоляционная — леммоциты (шванновские клетки) закручиваются вокруг отростков нейронов и формируют миелиновую оболочку
- Барьерная и защитная — изолируют нейроны от тканей внутренней среды организма
- Некоторые глиоциты секретируют цереброспинальную (спинномозговую) жидкость — ликвор (от лат. liquor — жидкость)
В состав нейроглии входят разные клетки, их в десятки раз больше чем самих нейронов. В периферическом отделе нервной
системы миелиновая оболочка, изученная нами, образуется именно из нейроглии — шванновских клеток (леммоцитов). Между ними хорошо
заметны перехваты Ранвье — участки, лишенные миелиновой оболочки, между двумя смежными шванновскими клетками.
Классификация нейронов
Нейроны функционально подразделяются на чувствительные, двигательные и вставочные.
Чувствительные нейроны также называются афферентные, центростремительные, сенсорные, воспринимающие — они воспринимают раздражения, преобразуют их в нервные импульсы и передают в ЦНС. Рецептором называют концевое окончание чувствительных нервных
волокон, воспринимающих раздражитель.
Вставочные нейроны также называются промежуточные, ассоциативные — они обеспечивают связь между чувствительными и двигательными
нейронами, передают возбуждение в различные отделы ЦНС, участвуют в обработке информации и выработке команд.
Двигательные нейроны по-другому называются эфферентные, центробежные, мотонейроны — они передают нервный импульс (возбуждение) на
эффектор (рабочий орган). Наиболее простой пример взаимодействия нейронов — коленный рефлекс (однако вставочного нейрона
на данной схеме нет). Более подробно рефлекторные дуги и их виды мы изучим в разделе, посвященном нервной системе.
Синапс
На схеме выше вы наверняка заметили новый термин — синапс (греч. sýnapsis — соединение). Синапсом называют место контакта между двумя нейронами или между
нейроном и эффектором (органом-мишенью). В синапсе нервный импульс «преобразуется» в химический: происходит выброс особых
веществ — нейромедиаторов (наиболее известный — ацетилхолин) в синаптическую щель.
Разберем строение синапса на схеме. Его составляют пресинаптическая мембрана аксона, рядом с которой расположены везикулы (лат. vesicula — пузырек) с
нейромедиатором внутри (ацетилхолином). Если нервный импульс достигает терминали (окончания) аксона, то везикулы начинают
сливаться с пресинаптической мембраной: ацетилхолин поступает наружу, в синаптическую щель.
Попав в синаптическую щель, ацетилхолин связывается с рецепторами на постсинаптической мембране, таким образом, возбуждение (нервный импульс)
передается другому нейрону. Так устроена нервная система: электрический путь передачи сменяется
химическим (в синапсе).
Яд кураре
Гораздо интереснее изучать любой предмет на примерах, поэтому я постараюсь как можно чаще радовать вас ими Не могу утаить
историю о яде кураре, который используют индейцы для охоты с древних времен.
Этот яд блокирует ацетилхолиновые рецепторы на постсинаптической мембране, и, как следствие, химическая передача возбуждения с
одного нейрона на другой становится невозможна. Это приводит к тому, что нервные импульсы перестают поступать к эффекторам,
в том числе к дыхательным мышцам (межреберным, диафрагме), вследствие чего дыхание останавливается и наступает смерть животного.
Нервы и нервные узлы
Собираясь вместе, отростки нейронов (нервные волокна) образуют пучки нервных волокон. Нервные пучки объединяются в нервы, которые покрыты соединительнотканной оболочкой.
В случае, если тела нейронов концентрируются в одном месте за пределами центральной нервной системы, их скопления
называют нервным узлом — или ганглием (от др.-греч. γάγγλιον — узел).
В случае сложных соединений между нервными волокнами говорят о нервных сплетениях. Одно из наиболее известных —
плечевое сплетение.
Болезни нервной системы
Неврологические болезни могут развиваться в любой точке нервной системы: от этого будет зависеть клиническая картина. В случае повреждения
чувствительного пути пациент перестает чувствовать боль, холод, тепло и другие раздражители в зоне иннервации пораженного нерва, при этом
движения сохранены в полном объеме.
Если повреждено двигательное звено, движение в пораженной конечности будет
невозможно: возникает паралич, но чувствительность может сохраняться.
Существует тяжелое мышечное заболеванием — миастения (от др.-греч. μῦς — «мышца» и ἀσθένεια — «бессилие, слабость»), при
котором собственные антитела разрушают мотонейроны (двигательные нейроны).
Постепенно любые движения мышцами становятся для пациента все труднее,
становится тяжело долго говорить, повышается утомляемость. Наблюдается характерный симптом — опущение верхнего века.
Болезнь может привести к слабости диафрагмы и дыхательных мышц, вследствие чего дыхание становится невозможным.
© Беллевич Юрий Сергеевич 2018-2023
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.
https://ru.wikipedia.org/wiki/%D0%90%D0%BA%D1%81%D0%BE%D0%BD
Нейрон состоит из одного аксона, тела и нескольких дендритов,
Аксон (греч. ἀξον — ось) — нервное волокно, длинная, вытянутая часть нервной клетки (нейрона), отросток или нейрит, элемент, который проводит электрические импульсы далеко от тела нейрона (сомы).
Строение нейрона
Нейрон состоит из одного аксона, тела и нескольких дендритов, в зависимости от числа которых нервные клетки делятся на униполярные, биполярные, мультиполярные. Передача нервного импульса происходит от дендритов (или от тела клетки) к аксону. Если аксон в нервной ткани соединяется с телом следующей нервной клетки, такой контакт называется аксо-соматическим, с дендритами — аксо-дендритический, с другим аксоном — аксо-аксональный (редкий тип соединения, встречается в ЦНС, участвует в обеспечении тормозных рефлексов).
В месте соединения аксона с телом нейрона находится аксонный холмик — именно здесь происходит преобразование постсинаптического потенциала нейрона в нервные импульсы, для чего требуется совместная работа натриевых, кальциевых и как минимум трех типов калиевых каналов.
Питание и рост аксона зависят от тела нейрона: при перерезке аксона его периферическая часть отмирает, а центральная сохраняет жизнеспособность. При диаметре в несколько микрон длина аксона может достигать у крупных животных 1 метра и более (например, аксоны, идущие от нейронов спинного мозга в конечности). У многих животных (кальмаров, рыб, кольчатых червей, форонид, ракообразных) встречаются гигантские аксоны толщиной в сотни мкм (у кальмаров — до 2-3 мм). Обычно такие аксоны отвечают за проведение сигналов к мышцам. обеспечивающим «реакцию бегства» (втягивание в норку, быстрое плавание и др.). При прочих равных условиях с увеличением диаметра аксона увеличивается скорость проведения по нему нервных импульсов.
В протоплазме аксона — аксоплазме — имеются тончайшие волоконца — нейрофибриллы, а также микротрубочки, митохондрии и агранулярная(гладкая)эндоплазматическая сеть. В зависимости от того, покрыты ли аксоны миелиновой (мякотной) оболочкой или лишены её, они образуют мякотные или безмякотные нервные волокна.
Миелиновая оболочка аксонов имеется только у позвоночных. Её образуют «накручивающиеся» на аксон специальные шванновские клетки, между которыми остаются свободные от миелиновой оболочки участки — перехваты Ранвье. Только на перехватах присутствуют потенциал-зависимые натриевые каналы и заново возникает потенциал действия. При этом нервный импульс распространяется по миелинизированным волокнам ступенчато, что в несколько раз повышает скорость его распространения.
Концевые участки аксона — терминали — ветвятся и контактируют с другими нервными, мышечными или железистыми клетками. На конце аксона находится синаптическое окончание — концевой участок, контактирующий с клеткой-мишенью. Вместе с постсинаптической мембраной клетки-мишени синаптическое окончание образует синапс. Через синапсы передаётся возбуждение.[1]
Анатомия
Аксоны — в действительности первичные линии передачи сигналов нервной системы, и как связки они помогают составлять нервные волокна. Индивидуальные аксоны являются микроскопическими в диаметре (типично 1 мкм в сечении), но могут достигать нескольких метров. Самые длинные аксоны в человеческом теле, например, аксоны седалищного нерва, которые простираются от позвоночника к большому пальцу ноги. Эти волокна единственной ячейки седалищного нерва могут увеличиться до метра или еще длинее.[2]
У позвоночных животных, аксоны многих нейронов вложены в ножны в миелине, который сформирован любым из двух типов глиальных ячеек: Ячейки Schwann ensheathing периферийные нейроны и oligodendrocytes изолирование таковых из центральной нервной системы. По myelinated волокнам нерва, промежутки в ножнах, известных, поскольку узлы Ranvier происходят в равномерно-раздельных интервалах. Myelination имеют очень быстрый способ электрического распространения импульса, названного скачкообразным. Demyelination аксоны, который вызывает множество неврологических признаков, типичных для заболевания под названием «рассеянный склероз». Аксоны некоторой ветви нейронов, формирующие имущественные залоги аксона, могут быть разделены на множество меньших ветвей, названных telodendria. По ним bifurcated импульс распространяются одновременно, для сигнализиции больше, чем одной ячейки другую ячейку.
Физиология
Физиология может быть описана Моделью Hodgkin-Huxley, распространённой на позвоночных животных в уравнениях Frankenhaeuser-Huxley. Периферийные волокна нерва могут быть классифицированы на основанные, на аксонально-скоростные проводимости, mylenation, размеры волокна и т.д. Например, есть медленное проведение unmyelinated С fibers волокна и более быстрое проведение myelinated Aδ fibers волокна. Более сложное математическое моделирование проводится сегодня. Есть несколько типов сенсорных — таких как motorfibers. Другие волокна, не упомянутые в матеоиале — например, волокна автономной нервной системы
Двигательная функция
В таблице паказаны моторные нейроны, которые имеют два вида волокон:
Тип | Классификация | Диаметр | Миелин | Скорость проводимости | Связанные мускульные волокна |
---|---|---|---|---|---|
α | Aα | 13-20 мкм | Yes | 80-120 m/s | Extrafusal muscle fibers |
γ | Aγ | 5-8 мкм | Yes | 4-24 m/s[3][4] | Intrafusal muscle fibers |
Сенсорная функция
Различные сенсорные рецепторы возбуждаются различными типами волокон нерва. Proprioceptors возбуждены типом Ia, Ib и II сенсорными волокнами, механорецепторы — типом II и III сенсорными волокнами и типом nociceptors и thermoreceptors.
Типы | Классификация | Диаметр | Миелин | Скорость проводимости | Связанные сенсорные рецепторы |
---|---|---|---|---|---|
Ia | Aα | 13-20 мкм | Yes | 80-120 m/s | Primary receptors of muscle spindle |
Ib | Aα | 13-20 мкм | Yes | 80-120 m/s | Golgi tendon organ |
II | Aβ | 6-12 мкм | Yes | 33-75 m/s | Secondary receptors of muscle spindle All cutaneous mechanoreceptors |
III | Aδ | 1-5 мкм | Thin | 3-30 m/s | Free nerve endings of touch and pressure Nociceptors of neospinothalamic tract Cold thermoreceptors |
IV | C | 0.2-1.5 мкм | No | 0.5-2.0 m/s | Nociceptors of paleospinothalamic tract Warmth receptors |
Автономная функция
Автономная нервная система имеет два вида периферийных волокон:
Typы | Классификация | Диаметр | Миелин[5] | Скорость проводимости |
---|---|---|---|---|
preganglionic fibers | B | 1-5 мкм | Yes | 3-15 m/s |
postganglionic fibers | C | 0.2-1.5 мкм | No | 0.5-2.0 m/s |
Рост и развитие аксона
Нейрон
Рост аксонов происходит через их окружающую среду, в виде конуса роста, который находится в наконечнике аксона. Конус роста имеет широкий лист как расширение, названное lamellipodia, которое содержат выпячивания, названные filopodia. Filopodia — механизм, представляющий процесс придержки поверхностей. Он анализирует ближайшую окружающую среду. Актин играет главную роль в подвижности этой системы. Окружающие среды с высокими уровнями молекул прилипания ячейки или «КУЛАКА» создают идеальную окружающую среду для аксонального роста. Это, кажется, обеспечивает «липкую» поверхность для аксонов, для раста вперед. Примеры КУЛАКА, определенного для нервных систем включают: N-КУЛАК, neuroglial КУЛАК или NgCAM, ПОМЕТЬТЕ 1, МЭГ, и DCC, все из которых — часть суперсемьи иммуноглобулина. Другой набор молекул звонковый, внеклеточные матричные молекулы прилипания также обеспечивают липкое основание для аксонов, чтобы расти вперед. Примеры этих молекул включают laminin, fibronectin, tenascin, и perlecan. Некоторые из них — поверхность, привязанная к ячейкам и таким образом действуют, как короткие аттрактанты диапазона или repellents. Другие — difusible лиганды и таким образом могут долго сохранять эффекты диапазона.
Ячейки звонковые, ячейки указательного столба помогают в руководстве ростом аксона нейронала. Эти ячейки — типично другой, иногда незрелый, нейроны.
История
Часть первой внутриклеточной регистрации в нервной системе была сделана в конце 1930-ых учёными K. Капуста и H. Куртис. Алан Ходгкин и Эндрю Хакслей также использовали аксон гиганта кальмара (1939), и в 1952 они получили полное количественное описание действия ионного основания потенциала, введя формулировку Модели Hodgkin-Huxley. Ходгкину и Хакслей, были предтавлены совместно на паолучение Нобелевской премии по этой работе в 1963. Формулы, детализирующие аксональную проводимость были расширены на позвоночных животных в уравнениях Frankenhaeuser-Huxley. Erlanger и Gasser ранее развивали систему классификации для периферийного[5] волокна нерва, основанные на аксональной скорости проводимости, myelination, размере волокна и т.д. Даже и сейчас наше понимание биохимического процесса распространения действия потенциала продвинулось, и теперь он включает много деталей об индивидуальных каналах иона.
Рана
Основная статья: Рана
На серьёзном уровне, рана нерва может быть описана как neuropraxia, axonotmesis, или neurotmesis. Сотрясение мозга считают умеренной формой разбросанной аксональной раны [6].
См. также
- Сенсорные нервы
- Сенсорный рецептор
- Нейрон
- Аксональный поиск пути
- Аксональный транспорт
- Аксон-рефлекс
- Конус роста
- Дендрит
- Валлерова дегенерация — при разрыве аксона
Примечания
- ↑ http://en.wikipedia.org/wiki/Axon
- ↑ DNA From The Beginning, section 6: Genes are real things., «Amination» section, final slide
- ↑ Andrew BL, Part NJ (1972) Properties of fast and slow motor units in hind limb and tail muscles of the rat. Q J Exp Physiol Cogn Med Sci 57:213-225.
- ↑ Russell NJ (1980) Axonal conduction velocity changes following muscle tenotomy or deafferentation during development in the rat. J Physiol 298:347-360.
- ↑ pp.187-9 ISBN 0-19-858527-6
- ↑ eMedicine — Traumatic Brain Injury: Definition, Epidemiology, Pathophysiology : Article by Segun T Dawodu, MD, FAAPMR, FAANEM, CIME, DipMI(RCSed)
Гистология: Нервная ткань |
|
---|---|
Нейроны (Серое вещество) |
Сома · Аксон (Аксонный холмик, Терминаль аксона, Аксоплазма, Аксолемма, Нейрофиламенты) Дендрит (Вещество Ниссля, Дендритный шипик, Апикальный дендрит, Базальный дендрит) типы: Биполярные нейроны · Псевдополярные нейроны · Мультиполярные нейроны · Пирамидальный нейрон · Клетка Пуркинье · Гранулярная клетка |
Афферентный нерв/ Сенсорный нерв/ Сенсорный нейрон |
GSA · GVA · SSA · SVA · Нервные волокна (Мышечные веретёна (Ia), Нервно-сухожильное веретено, II or Aβ, Aδ-волокна, C-волокна) |
Эфферентный нерв/ Моторный нерв/ Моторный нейрон |
GSE · GVE · SVE · Верхний моторный нейрон · Нижний моторный нейрон (α мотонейроны, γ мотонейроны) |
Синапс |
Нейропиль · Синаптический пузырек · Нервно-мышечный синапс · Электрический синапс · Интернейрон (Клетки Реншоу) |
Сенсорный рецептор |
Чувствительное тельце Мейснера · Нервное окончание Меркеля · Тельца Пачини · Окончание Руффини · Нервномышечное веретено · Свободное нервное окончание · Обонятельный нейрон · Фоторецепторные клетки · Волосковые клетки · Вкусовая луковица |
Нейроглия |
Астроциты (Радиальная глия) · Олигодендроглиоциты · Клетки эпендимы (Танициты) · Микроглия |
Миелин (Белое вещество) |
CNS: Олигодендроцит PNS: Клетки Шванна · Невролемма · Перехват Ранвье/Межузловой сегмент · Насечка миелина |
Соединительная ткань |
Эпиневрий · Периневрий · Эндоневрий · Нервные пучки · Оболочки мозга |
Что такое нейроны? Это клетки, ответственные за функции нервной системы. В нашем мозге их миллионы, по подсчётам, в момент рождения — около 80 миллионов. С возрастом количество этих клеток уменьшается: к 80 годам утрачивается 30%. В течение дня мы постоянно теряем и регенерируем нервные клетки.Посредством их регенерации образуются новые связи, в результате чего происходит процесс, называемый нейрогенез, с помощью которого на протяжении всей человеческой жизни рождаются новые нейроны.
Мы ежедневно выполняем различные действия, которые провоцируют нейронное нарушение, и как результат, когнитивное нарушение. Если человек пьёт, курит, не доедает или не высыпается, напряжён или испытывает стресс, то он преждевременно теряет нейроны.
Уверены, вам знакомо выражение ‘используй — или потеряешь’. Упражнения нужны как для нашего тела, так и для нервных клеток мозга. Ниже перечислим причины того, почему необходимо поддерживать клетки мозга активными:
- Активные клетки мозга получают больше крови, чем пассивные.
Учёные знают, что активным областям мозга нужно больше энергии, поэтому они потребляют больше кислорода и глюкозы. В связи с чем, чтобы удовлетворить потребности активных нейронов, в эти области направляется больше крови. Как только мозг активируется, кровь отправляется к работающим мозговым клеткам, поставляя им ценный кислород. Снимки магнитно-резонансной томографии (МРТ) головного мозга используются для изучения мозгового кровообращения. Изучение этих снимков показало, что наши мозговые клетки, также известные как нейроны, очень зависимы от поставок кислорода. Таким образом, чем активнее мозг, тем более активны нервные клетки, и тем больше кислорода они получают. И наоборот, неактивная мозговая клетка получает меньший приток крови и в конце концов погибает.
- Активные клетки мозга имеют связи с другими клетками мозга.
Каждая клетка мозга связывается с другими при помощи быстрых электрических импульсов. Активные клетки мозга вырабатывают дендриты. Можно сказать, что это маленькие ручки, которые связываются с другими клетками. Одна клетка может иметь до 30.000 связей, в результате чего она становится частью очень активной нейронной сети. Когда активируется одна из нервных клеток, импульс проходит через всю сеть, активируя остальные клетки мозга. Чем больше нейронная сеть, к которой принадлежит клетка, тем выше возможность её активации и выживания.
- Активные клетки мозга вырабатывают больше «поддерживающих» веществ.
Фактор Роста Нервов (NGF) — это протеин, который вырабатывается в теле в клетках-мишенях. Этот белок соединяется с нейронами, тем самым делая их активными, дифференцированными и рецепторными. Активные клетки мозга улучшают выработку NGF, что, в свою очередь, защищает их от того, чтобы они не были классифицированы как неактивные. Таким образом, чем больше мозг активен и натренирован, тем больше NGF вырабатывается.
- Активные клетки мозга стимулируют перемещение полезных стволовых клеток мозга.
Новые исследования показывают, что новые клетки мозга генерируются в новой специфической области мозга, в гиппокампе. Эти клетки мозга могут перемещаться в те области мозга, где они необходимы, например, после травмы головы. Эти мигрирующие клетки могут имитировать действия прилегающих к ним клеток, способствуя частичному восстановлению активности поражённой зоны. Так что для восстановления после полученной травмы или когнитивного нарушения очень важно и полезно стимулировать и тренировать соответствующие области мозга.
Структура нейрона
Нейрон представляет собой структуру, основными частями которой являются ядро, клеточное тело и дендриты. Между клетками имеется огромное количество связей благодаря аксонам, то есть небольшим разветвлениям. Аксоны помогают нам производить связи, функция которых заключается в трансмиссии сообщений между нервными клетками. Этот процесс называется синапс, что означает соеденение аксонов посредством электрических зарядов со скоростью 0,001 секунды, это может происходить 500 раз за секунду.
1. Ядро
Это центральная чать нейрона, находится в клеточном теле и отвечает за выработку энергии для функционирования нервной клетки.
2. Дендриты
Дендриты — это «руки нейрона». Они формируют небольшие разветвлённые отростки, выходящие из различных частей сомы нейрона, то есть, из клеточного тела. Обычно существует множество разветвлений дендрита, размер которых зависит от функции нейрона и его местонахождения. Основной функцией дендритов является получение стимулов от других нейронов.
3. Клеточное тело
Это часть нейрона, которая включает в себя ядро клетки. Именно в этом пространстве синтезируется или генерируется большая часть молекул нейрона и осуществляются наиболее важные действия по поддержанию жизни и функций нервной клетки.
4. Нейроглия
Нейроны являются настолько специализированными клетками, что сами по себе они не могут выполнять все функции питания и поддержки, необходимые для собственного выживания. Поэтому нейрон окружает себя другими клетками, которые выполняют для него эти функции: Астроцит (в основном отвечает за питание, очистку и поддержку нейронов), Олигодендроцит (в основном отвечает за покрытие миелином аксонов центральной нервной системы, также выполняет поддерживающие и соединяющие функции), Микроглия (отвечает главным образом за иммунный ответ, удаление отходов и поддержание гомеостаза нейрона), Шванновская клетка (в основном отвечает за покрытие миелином аксонов периферической нервной системы, как показано на рисунке), Эпендимоцит (в первую очередь отвечает за покрытие желудочков головного мозга и части спинного мозга).
5. Миелин
Миелин — это вещество, состоящее из протеинов и жидкостей. Оно формирует оболочку аксонов нейронов, что позволяет их защитить, изолировать и сделать до 100 раз более эффективной передачу потенциала действия по нервным волокнам. В центральной нервной системе миелин вырабатывается олигодендроцитами, а в периферической — Шванновскими клетками.
6. Терминаль аксонов
Терминаль аксонов или синаптическая бляшка находится в конце аксона нейрона, разделённого на терминали, функции которых заключаются в объединении с другими нейронами и формировании таким образом синапса. В этих терминальных бляшках, в небольших хранилищах, которые называются везикулами, сосредоточены нейротрансмиттеры. Передача этих везикул от терминальных бляшек нейрона к дендритам другого нейрона известна как синапс.
7. Перехваты Ранвье
Перехват Ранвье — это промежуток или пространство между миелиновыми оболочками аксона. Пространство между миелиновыми оболочками необходимо для оптимизации передачи импульсов и избежания их потери. Это то, что известно как прыжковая проводимость нервного импульса. Основная функция Перехвата Ранвье заключается в облегчении направления импульсов и оптимизации энергопотребления.
8. Аксон
Аксон — ещё одна важнейшая часть нейрона. Аксон представляет собой тонкое, удлинённое нервное волокно, завёрнутое в миелиновые оболочки, отвечающее за передачу электрических сигналов от сомы нейрона к терминальным бляшкам.
FAQ
Сергей Саложин
Сохранить в закладки
30684
11
Сохранить в закладки
7 фактов об устройстве и взаимодействии нейронов
02.08.2012
Над материалом работали
Сергей Саложин
кандидат биологических наук, заведующий лабораторией молекулярной нейробиологии Институт высшей нервной деятельности и нейрофизиологии РАН
Добавить в закладки
Вы сможете увидеть эту публикацию в личном кабинете
ПРОМО Какие агенты внутри нас защищают организм от угроз
Добавить в закладки
Вы сможете увидеть эту публикацию в личном кабинете
tv Философия сознания: Ученый Мэри
Добавить в закладки
Вы сможете увидеть эту публикацию в личном кабинете
Журнал Поиск букв в больших буквенных массивах: парадоксы «теста Мюнстерберга»
Добавить в закладки
Вы сможете увидеть эту публикацию в личном кабинете
FAQ Sylvocarpus
Добавить в закладки
Вы сможете увидеть эту публикацию в личном кабинете
Видео
2013
12
Индивидуальность нейронов и синаптическая конкуренция
Добавить в закладки
Вы сможете увидеть эту публикацию в личном кабинете
Видео
101739
100
Синдром Дауна
Добавить в закладки
Вы сможете увидеть эту публикацию в личном кабинете
Журнал Главы | Сексуальные привилегии
Добавить в закладки
Вы сможете увидеть эту публикацию в личном кабинете
Журнал Варан: история современного дракона
Добавить в закладки
Вы сможете увидеть эту публикацию в личном кабинете
лекции Биоинформатические подходы к изучению и лечению рака легких