Мозжечок
Это центр регуляции
равновесия и координации движений.
Мозжечок собирает всю информацию,
поступающую из спинного мозга,
вестибулярных ядер, ретикулярной
формации и коры головного мозга,
анализирует её и координирует движения
тела через мотонейроны спинного мозга.
Мозжечок
расположен над продолговатым мозгом и
варолиевым мостом и связан со стволом
мозга афферентными и эфферентными
проводящими путями, находящихся в трёх
парах ножек мозжечка.
Мозжечок
образован двумя полушариями
и узкой средней частью – червём
– и состоит из серого и белого вещества.
В сером
веществе
лежат тела нейронов, а в белом
веществе – их
отростки, образующие нервные волокна
и проводящие пути. В полушариях по
периферии расположена кора,
образующая глубокие складки (извилины
и борозды), значительно увеличивающие
её поверхность, а в центре мозжечка
серое вещество образует центральные
ядра мозжечка.
В
коре мозжечка различают три слоя:
наружный – молекулярный,
средний
– ганглионарный,
или слой грушевидных нейронов (клеток
Пуркинье) и внутренний – зернистый.
Схематическое
строение коры мозжечка представлено
на рисунке 9-6.
В
ганглионарном
слое
нейроны расположены строго в один ряд
(ганглиозные
нейроны,
или клетки
Пуркинье).
Это крупные нейроны грушевидной формы,
размером до 60 мкм. От их апикальных
концов отходят 2-3 толстых дендрита,
которые древовидно ветвятся, пронизывая
своими ветвлениями весь молекулярный
слой коры. На дендритах имеются
многочисленные синапсы нейронов
молекулярного и зернистого слоёв. На
одной грушевидной клетке заканчивается
более 40 тысяч синапсов. Ветви дендритов
располагаются только в одной плоскости
– перпендикулярно
к направлению извилин. Поэтому если
сделать срез коры мозжечка
перпендикулярно извилине, то можно
увидеть ветвления дендритов в виде
дерева с широкой кроной, а на продольном
срезе извилины кроны дендритных деревьев
узкие (как у тополей). От основания
грушевидных нейронов отходят аксоны,
проходящие через зернистый слой в белое
вещество и заканчивающиеся на клетках
ядер мозжечка. Это единственные
эфферентные
волокна
коры мозжечка. По ходу аксон отдаёт
коллатерали, идущие возвратно и
образующие тормозные синапсы на
других клетках Пуркинье.
Грушевидные нейроны
обеспечивают анализ всей информации,
приходящей в мозжечок, и координацию
движений (через ядра мозжечка и
мотонейроны спинного мозга). При старении
человека количество грушевидных нейронов
заметно снижается (на 20-40%), что может
служить одной из причин нарушения
функций мозжечка у пожилых людей.
Молекулярный
слой
содержит два вида нейронов: корзинчатые
и
звёдчатые.
Это вставочные нейроны, передающие
тормозные нервные импульсы на грушевидные
нейроны. Корзинчатые
нейроны – мелкие
нейроны, располагаются непосредственно
над телами грушевидных нейронов. Их
дендриты располагаются вдоль дендритов
ганглиозных клеток, а длинные нейриты
идут над грушевидными нейронами, давая
коллатерали густо оплетающие их тела
снизу в виде корзинок.
Ветвления аксона одной корзинчатой
клетки могут оплетать до 240 клеток
Пуркинье.
Звёздчатые
нейроны бывают
двух типов. Мелкие
звёздчатые нейроны образуют синапсы
на телах грушевидных клеток. Крупные
звёздчатые нейроны образуют синапсы
на дендритах и телах грушевидных
нейронов, участвуя в образовании
корзинок. Звёздчатые и корзинчатые
нейроны тормозят активность грушевидных
нейронов.
Зернистый
слой.
Содержит зерновидные
нейроны, звёздчатые
нейроны и веретеновидные
горизонтальные клетки.
Зерновидные
нейроны
имеют маленькие перикарионы (5-8 мкм).
На их коротких дендритах, имеющих вид
«куриных лапок» заканчиваются афферентные
моховидные
волокна
с образованием своеобразных структур
— клубочек
мозжечка.
Аксоны зерновидных нейронов проходят
в молекулярный слой, Т-образно ветвятся
и идут вдоль
извилин коры. При этом они пересекают
дендритные ветвления многих грушевидных
нейронов и образуют с ними и дендритами
корзинчатых и звёздчатых нейронов
синапсы.
Большие
звёздчатые нейроны (клетки
Гольджи) —
тормозные
нейроны. Они бывают с короткими и длинными
нейритами. Нейроны
с короткими нейритами
лежат вблизи ганглионарного слоя. Их
дендриты идут в молекулярный слой и
образуют синапсы с аксонами клеток-зёрен,
а нейриты заканчиваются синапсами
на дендритах клеток-зёрен, блокируя
импульсы, поступающие по моховидным
волокнам. Звёздчатые
нейроны с длинными аксонами
обеспечивают
связь между различными областями коры
мозжечка: их дендриты широко ветвятся
в зернистом слое, а аксоны уходят в белое
вещество к другим участкам коры мозжечка
(рис. 9-6).
Веретеновидные
горизонтальные клетки расположены
под грушевидными нейронами, дендриты
ветвятся в ганглиозном и зернистом
слоях, а аксоны уходят в белое вещество.
Афферентные
волокна,
приходящие
в кору мозжечка, бывают двух видов:
моховидные и лазящие. Моховидные
волокна
идут в составе оливомозжечкового и
мостомозжечкового путей и опосредованно,
через клетки-зёрна, оказывают на
грушевидные клетки возбуждающее
действие. Лазящие
волокна (восходящие)
приходят в кору мозжечка по спиномозжечковому
и вестибуломозжечковому путям, проникают
в молекулярный слой и заканчиваются
синапсами на дендритах и телах грушевидных
клеток. Эти волокна передают возбуждение
непосредственно
грушевидным клеткам (рис. 9-6).
Таким
образом, возбуждение
к грушевидным нейронам мозжечка
передаётся по афферентным волокнам, а
торможение
обеспечивается звёздчатыми и корзинчатыми
нейронами молекулярного слоя и
большими звёздчатыми нейронами
зернистого слоя.
Эфферентные
волокна коры мозжечка
представлены аксонами грушевидных
нейронов. Они направляются в белое
вещество и образуют тормозные синапсы
на нейронах глубоких ядер мозжечка
и вестибулярного ядра. Основными
медиаторами возбуждающих синапсов
мозжечка являются глутамат и аспартат,
а тормозных – ГАМК.
Рис. 9-6. Схематическое
строение коры мозжечка.
При
патологии мозжечка развивается:
1. Атаксия — шаткая
походка.
2. Атония — ослабление
мышечного тонуса.
3. Астазия — мышечный
тремор или дрожь.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
1. Мозжечок Мозжечок располагается над продолговатым мозгом и варолиевым мостом и представляет собой центр равновесия, поддержания мышечного тонуса, координации движений и контроля сложных и автоматически выполняемых двигательных актов. Он образован двумя полушариями с большим числом бороздок и извилин на поверхности и узкой средней частью (червем) и связан с другими частями мозга тремя парами ножек. Серое вещество образует кору мозжечка и ядра, которые залегают в глубине его белого вещества.
Кора мозжечка является нервным центром экранного типа и характеризуется высокой упорядоченностью расположения нейронов, нервных волокон и глиальных клеток. В ней различают три слоя (снаружи внутрь):
- молекулярный слой, содержащий сравнительно небольшое количество мелких клеток;
- ганглионарный слой, образованный одним рядом тел крупных грушевидных клеток (клеток Пуркинье);
- зернистый слой, с большим количеством плотно лежащих клеток.
2. Молекулярный слой коры мозжечка Молекулярный слой содержит тела корзинчатых и звездчатых клеток (коротко- и длинноаксонных).
Корзинчатые клетки располагаются во внутренней части молекулярного слоя. Их короткие дендриты образуют связи с параллельными волокнами в наружной части молекулярного слоя, а длинный аксон идет поперек извилины, отдавая через определенные интервалы коллатерали, которые спускаются к телам клеток Пуркинье и, разветвляясь, охватывают их наподобие корзинок, образуя тормозные аксо-соматические синапсы.
Звездчатые клетки — мелкие нейроны, тела которых лежат выше тел корзинчатых клеток. У короткоаксонных звездчатых клеток дендриты образуют связи с параллельными волокнами, а разветвления аксона формируют тормозные синапсы на дендритах клеток Пуркинье. У длинноаксонных звездчатых клеток аксон может участвовать в образовании корзинки вокруг тела клетки Пуркинье.
3. Ганглионарный слой коры мозжечка Ганглионарный слой содержит лежащие в один ряд тела клеток Пуркинье (грушевидных нейронов), оплетенные коллатералями аксонов корзинчатых клеток («корзинками»).
Клетки Пуркинье (грушевидные нейроны) — крупные клетки с телом грушевидной формы, содержащим хорошо развитые органеллы. От него в молекулярный слой отходят 2-3 первичные (стволовые) дендрита, интенсивно ветвящиеся в плоскости, перпендикулярной направлению извилины, с образованием конечных (терминальных) дендритов, достигающих поверхности молекулярного слоя. На дендритах находятся 60-100 тыс. шипиков — контактных зон возбуждающих синапсов, образуемых параллельными волокнами (аксонами клеток-зерен) и возбуждающих синапсов, образуемых лазящими волокнами.
Аксон клетки Пуркинье отходит от основания ее тела, одевается миелиновой оболочкой, пронизывает зернистый слой и проникает в белое вещество, являясь единственным эфферентным путем его коры. По ходу аксон отдает коллатерали, возвращающиеся в область расположения тел клеток Пуркинье и образующие тормозные синапсы на телах соседних клеток Пуркинье и клеток Гольджи.
Количество клеток Пуркинье заметно снижается при старении — на 20-40 % к 70-90 годам (по сравнению с их числом у 40-50 летних), что, вероятно, служит одной из причин нарушения функции мозжечка у пожилых людей.
4. Зернистый слой коры мозжечка Зернистый слой содержит близко расположенные тела клеток-зерен, больших клеток-зерен (клеток Гольджи), а также клубочки мозжечка — особые округлые сложные синаптические контактные зоны между моховидными волокнами, дендритами клеток-зерен и аксонами больших клеток-зерен.
Клетки-зерна — наиболее многочисленные нейроны коры мозжечка. Это мелкие нейроны со слабо развитыми органеллами и короткими дендритами, имеющими вид «птичьей лапки», на которых в клубочках мозжечка розетки моховидных волокон образуют многочисленные синаптические контакты. Аксоны клеток-зерен направляются в молекулярный слой, где Т-образно делятся на две ветви, идущие параллельно длине извилины (параллельные волокна), образуя возбуждающие синапсы на дендритах клеток Пуркинье, корзинчатых и звездчатых клеток и больших клеток-зерен. Через дендритное дерево каждой клетки Пуркинье проходит до 200-300 тыс. параллельных волокон, образуя на каждой клетке 60-100 тыс. синапсов (не все волокна образуют синапсы). Аксон каждой клетки-зерна образует связи с дендритами 250-500 клеток Пуркинье.
Большие клетки-зерна (клетки Гольджи) крупнее клеток-зерен, содержат хорошо развитые органеллы. Их аксоны в пределах клубочков мозжечка образуют синапсы на дендритах клеток-зерен, а длинные дендриты поднимаются в молекулярный слой, где ветвятся и образуют связи с параллельными волокнами. Большие клетки-зерна оказывают угнетающее влияние на активность клеток-зерен.
Афферентные волокна коры мозжечка включают моховидные (мшистые) и лазящие.
Моховидные (мшистые) волокна мозжечка проходят в составе спинно- и мостомозжечковых путей и, разветвляясь, заканчиваются расширениями (розетками) в особых контактных зонах — клубочках мозжечка, образуя синаптические контакты с дендритами клеток-зерен, на которых оканчиваются также и аксоны больших клеток-зерен. Клубочки мозжечка снаружи не полностью окружены плоскими отростками астроцитов.
Лазящие (лиановидные) волокна мозжечка идут в составе оливомозжечковых путей и проникают в кору из белого вещества, проходя через зернистый слой до ганглионарного и стелясь по телам и дендритам клеток Пуркинье, на которых они заканчиваются возбуждающими синапсами. Коллатеральные ветки лазящих волокон образуют синапсы на других нейронах всех типов, включая клетки-зерна, клетки Гольджи, звездчатые и корзинчатые клетки. С каждой клеткой Пуркинье обычно контактирует одно лазящее волокно.
Эфферентные волокна коры мозжечка представлены аксонами клеток Пуркинье, которые в виде миелиновых волокон направляются в белое вещество и достигает глубоких ядер мозжечка и вестибулярного ядра, на нейронах которых они образуют тормозные синапсы (клетки Пуркинье являются тормозными нейронами).
Межнейронные связи в коре мозжечка благодаря своему богатству обеспечивают переработку поступающей в нее разнообразной сенсорной информации. Возбуждающие импульсы поступают в кору мозжечка по лазящим и моховидным волокнам. В первом случае возбуждение передается на дендриты клеток Пуркинье непосредственно, во втором — через клубочки мозжечка — на дендриты клеток-зерен и далее по их аксонам (параллельным волокнам). Последние образуют возбуждающие синапсы также на дендритах корзинчатых и звездчатых клеток и больших клеток-зерен. Аксоны корзинчатых клеток образуют тормозные синапсы на телах клеток Пуркинье, а аксоны звездчатых клетокна их дендритах. Аксоны больших зернистых клеток в клубочках мозжечка образуют тормозные синапсы на дендритах клеток-зерен. Сформированные в коре мозжечка тормозные сигналы передаются с клеток Пуркинье на ядра мозжечка и вестибулярные ядра, а через них в конечном итоге контролируют активность нисходящих двигательных путей. В качестве основного медиаторов в возбуждающих синапсах используется глутамат и аспартат, в тормозных — амма-аминомаслянная кислота.
Глиальные элементы коры мозжечка обеспечивают функции нейронов, располагаются во всех ее слоях и весьма разнообразны; они включают олигодендроциты (участвуют в образовании миелиновых оболочек нервных волокон), астроциты, микроглию. Астроциты своими уплощенными на концах отростками образуют периваскулярные пограничные мембраны (компонент гемато-энцефалического барьера) и оболочки вокруг клубочков мозжечка. Особый тип астроцитов (клетки, или волокна Бергмана) располагаются вблизи тел клеток Пуркинье; их отростки охватывают тела нейронов идут к поверхности молекулярного слоя, формируя поверхностную пограничную глиальную мембрану, окружают и поддерживают дендриты клеток Пуркинье.
Обновлено: 06.04.2023
Функция мозжечка состоит, в первую очередь, в формировании двигательных программ, необходимых для поддержания равновесия тела, регуляции силы мышц и объема совершаемых с их участием движений.
Он не является составной частью иерархической сети двигательных систем, но имеет связи со всеми ее уровнями: моторной корой, двигательными центрами ствола и спинным мозгом. Благодаря этим связям мозжечок может сравнивать моторные программы коры с их исполнением, а затем корректировать движения, не соответствующие намеченной программе. Мозжечок способен накапливать опыт двигательной активности, сохраняя его в долговременной моторной памяти. Функциональная организация мозжечка
В мозжечке имеются три области, различающиеся спецификой своих соединений с головным и спинным мозгом и выполняемыми функциями: 1) вестибулоцеребеллум (червь с примыкающими к нему областями старой коры); 2) спиноцеребеллум (примыкающие к червю медиальные области полушарий мозжечка); 3) цереброцеребеллум, включающий в себя латеральные области полушарий мозжечка (рис. 4.25). Вестибулоцеребеллум получает афферентную информацию от вестибулярных ядер и к ним же посылает эфферентные сигналы: его основная задача состоит в сохранении равновесия при стоянии и ходьбе, а также в управлении движениями глаз. Спиноцеребеллум основную часть сенсорной информации получает от проводящих афферентных путей спинного мозга — двух спиномозжечковых трактов, несущих импульсы от проприоцепторов мышц и сухожилий. Эфферентная информация от ядер этой части мозжечка поступает к двигательным центрам ствола, относящимся как к медиальному, так и к латеральному нисходящим путям. Спиноцеребеллум контролирует правильность начинающихся движений ног и рук. Цереброцеребеллум получает при участии ядер моста информацию о планирующемся движении из сенсомотор- ных областей коры и посылает эфферентные сигналы к первичной и вторичной моторной коре, участвуя в планировании движений.
> Сохранение равновесия и движения глаз
alt=»» />
Вестибулоцеребеллум (функция сохранения равновесия и управления движениями глаз) получает зрительную и слуховую информацию, входные сигналы от вестибулярных ядер, ядер тройничного нерва и спинного мозга.
Спиноцеребеллум (управление движениями конечностей) получает афферентную информацию от проприоцепторов посредством спиномозжечковых трактов; эфферентный выход к первичной и вторичной моторной коре.
Цереброцеребеллум (формирование двигательных программ) получает афферентную информацию при посредничестве ядер моста от сенсомоторных областей коры; основной эфферентный выход к первичной и вторичной моторной коре.
Таким образом, мозжечок постоянно получает информацию о планирующихся движениях от коры, о положении головы и глаз, о тонусе мышц, необходимом для совершения движения,— от двигательных центров ствола, а от спинного мозга к нему поступают сведения о характере уже совершаемых движений. Располагая всей полнотой информации о движении — от замысла до исполнения, мозжечок постоянно сравнивает совпадение замысла с исполнением. При несоответствии хода движения намеченному плану мозжечок немедленно исправляет возникающие ошибки. Он может вносить коррективы как в двигательную программу, благодаря своим связям с моторной корой, так и в исполнение движения, действуя на двигательные центры ствола, на медиальные и латеральные нисходящие пути.
При выполнении запрограммированных произвольных движений выходная активность нейронов зубчатых ядер мозжечка регистрируется приблизительно на 10 мс раньше, чем она обнаружится в моторной коре. Это опережение имеет особенное значение при выполнении быстрых движе
При мозжечковом поражении пациент, например, промахивается, когда его просят быстро прикоснуться к кончику своего носа указательным пальцем. Взаимодействие нейронов коры и ядер мозжечка
Афферентная информация, адресованная мозжечку, распределяется между его ядрами и корой. Под влиянием афферентных сигналов нейроны ядер мозжечка создают основную часть его выходной активности, и лишь самая старая часть коры — клочок имеет непосредственную связь с вестибулярными ядрами. Функция коры мозжечка состоит в непрерывной модуляции выходной активности ядер тормозными нейронами Пуркинье, использующими в качестве медиатора ГАМК (рис. 4.26).
Во внутреннем слое трехслойной коры мозжечка расположены зернистые клетки, являющиеся входными нейронами коры, а также тормозные по отношению к ним клетки Гольджи. Афферентные моховидные волокна, образованные нейронами нескольких ядер ствола и спинного мозга, передают информацию зернистым клеткам от проприо- цепторов скелетных мышц, вестибулярного аппарата и коры. Аксоны зернистых клеток направлены в наружный слой коры мозжечка, где они Т-образно делятся на длинные волокна, которые возбуждают нейроны Пуркинье и одновременно тормозные интернейроны, сдерживающие активность клеток Пуркинье. Нигде в ЦНС больше не встречается столь выраженное, как в коре мозжечка, преобладание торможения над возбуждением, поэтому поступающее в кору мозжечка возбуждение прекращается уже через 100 мс: так быстро «стирается» информация об осуществлении актов движения — она не должна мешать поступлению новых оперативных данных.
Грушевидные нейроны Пуркинье формируют средний слой коры, они имеют аксоны, образующие синапсы с нейронами ядер мозжечка. Каждая клетка Пурки-
нье получает сигналы от приблизительно 200 000 параллельных волокон зернистых клеток, а каждая зернистая клетка собирает афферентные входы от десятка моховидных волокон.
Еще один афферентный вход в мозжечок представлен лазающими волокнами, которые образованы нейронами нижнего оливарного ядра продолговатого мозга и доставляют информацию от коры и от спинного мозга. Лазающие волокна обертывают тела и дендриты клеток Пуркинье, образуя с ними многочисленные синапсы, причем каждое лазающее волокно контактирует с несколькими (от одного до десяти) нейронами Пуркинье, но каждая клетка Пуркинье получает возбуждение только от одного лазающего волокна. Синапс между окончанием лазающего волокна и нейроном Пуркинье является одним из наиболее эффективных в ЦНС потому, что в ответ на одиночный потенциал действия, проведенный лазающим волокном, в нем возникает высокоамплитудный ВПСП. Результатом этого становится высокочастотный залп потенциалов действия клетки Пуркинье, направленный на нейроны ядер мозжечка и тормозящий их активность. Этот тормозной выход из коры мозжечка является конечным и единственным результатом ее деятельности.
Нейронная сеть коры мозжечка организована по принципу функциональных модулей, каждый из которых занимает сагиттальную зону шириной 1—2 мм. В каждый модуль входит лазающее волокно из определенной части оливы, а каждой клетке Пуркинье достается обособленная информация от моховидных и лазающего волокон. Лазающие волокна модулируют активность моховидных волокон, они могут усиливать их влияние, но могут и ограничивать эффективность определенных входов. В функциональном отношении это означает, что активность одного пути будет изменяться в зависимости от активности другого пути. Соотношение активности отдельных лазающих и моховидных волокон может меняться вследствие приобретаемого двигательного опыта — в результате подобной модуляции синаптических переключений повышается эффективность совершаемых действий. Эфферентные связи мозжечка с моторными структурами мозга
Клетки ядер мозжечка представляют собой обычные переключательные нейроны: в ответ на поступающую по коллатералям моховидных и лазающих волокон афферентную информацию они возбуждаются и отправляют эфферентные сигналы двигательным ядрам ствола.
Клетки Пуркинье ограничивают их активность таким образом, что выполнение одних моторных программ допускается, а других — отменяется в соответствии с характером афферентной информации и организацией связей между корой мозжечка и ядрами.
Эфферентное влияние зубчатых и промежуточных ядер мозжечка на сенсомоторную кору больших полушарий осуществляется при участии моторных вентролатералъных ядер таламуса, которые служат узловым пунктом нейронной сети, связывающей сенсомоторную кору не только с мозжечком, но и с базальными ганглиями. Аксоны таламических нейронов способны изменять активность пирамидных клеток, образующих кортикоспинальный путь, что позволяет мозжечку корректировать двигательные программы, создаваемые в моторных областях коры.
Еще одним пунктом переключения моторных систем мозга являются красные ядра, служащие источником образования руброспинальных путей. Здесь оканчиваются аксоны возбуждающих нейронов промежуточных ядер мозжечка и моторной коры, оказывающей тормозное влияние. От ядер шатра эфферентные волокна идут к вестибулярным ядрам и моторным ядрам ретикулярной формации ствола мозга, что позволяет мозжечку контролировать нисходящую активность вестибулоспинальных и ретикулоспи- нальных путей. Действие мозжечка на стволовые двигательные центры позволяет исправлять ошибки уже запущенной двигательной программы, если они возникают в процессе ее осуществления.
Функции мозжечка
Мозжечок регулирует силу и точность мышечных сокращений и их тонус как в покое, так и при движениях, а также синергию сокращений разных мышц при сложных движениях. При поражении мозжечка возникает целый ряд как двигательных расстройств, так и нарушений со стороны вегетативной нервной системы. К ним относятся астения —быстрая утомляемость, снижение силы мышечных сокращений,астазия —утрата способности к Длительному сокращению мышц, поэтому больной не может долго стоять или сидеть, неточность движений;атаксия —нарушение координации движений, неуверенная походка;абазия —невозможность сохранить центр тяжести тела;атония или дистония — лонижение или повышение тонуса мышц;тремор —дрожание пальцев рук, кистей и головы в покое, но его усиление при движении;дизартрия —нарушение кординации мышц лица, необходимая для четкого произнесения слов. Речь становится монотонной, медленной и невыразительной.Дисметрия —расстройство равномерности движения (гиперметрия или гипометрия).
Страдает кожная и проприоцептивная чувствительность нижних (пучок Флексига) и верхних конечностей (пучок Говерса)- При поражении мозжечка тормозится процесс обучения, так как многие движения человек заучивает во время жизни (письмо, ходьба). I
Нарушение функций мозжечка приводит к неточности движений, их разбросанности, негармоничности, а это говорит об участии мозжечка в деятельности коры больших полушарий, ответственной за организацию процессов высшей нервной деятельности.
Мозжечок влияет на возбудимость сенсомоторной коры больших полушарий и контролирует тем самым уровень тактильной, температурной и зрительной чувствительности.
Мозжечок играет адаптационно-трофическую роль в регуляции не только мышечной деятельнсти, но и ее вегетативного обеспечения. Удаление мозжечка приводит к нарушению целого ряда вегетативных функций (Л. А. Орбели). Мозжечок оказывает как угнетающее, так и стимулирующее влияние на работу сердечно-сосудистой системы. При раздражении последнего высокое артериальное давление снижается, а исходное низкое —повышается. Снижается частота дыхания, повышается тонус гладких мышц кишечника. При повреждении мозжечка нарушается углеводный, белковый и минеральный обмен, а также процессы энергообразования, терморегуляции и кроветворения. Стимуляция мозжечка приводит к нарушению репродуктивной функции, к сокращению матки у беременных кошек. Удаление мозжечка провоцирует рождение нежизнеспособного потомства или препятствует зачатию.
Промежуточный мозг
В состав промежуточного мозга входят: 1)таламус (область зрительногобугра), 2)гипоталамус(подталамическая область)и3)третий желудочек.
Область зрительного бугра, в свою очередь, слагается: 1)из зрительного бугра (таламус оптикус), 2)надталамической области (эпиталамус —эпифиз, шишковидная железа), 3)заталамической области (метаталамус —медиальное и латеральное коленчатые тела).
Таламус
Зрительный бугор является местом переключения всех чувствительных проводников, идущих от экстеро-, проприо- и интерорецепторов, поднимающихся в кору головного мозга. В нем происходит обработка всей информации, поступающей в кору из спинного мозга и подкорковых структура По мнению А.Уолкера. выдающегося исследователя зрительного бугра, «таламус является посредником, в котором сходятся все раздражения от внешнего мира и, видоизменяясь здесь, направляются к подкорковым корковым центрам таким образом, чтобы организм смог адекватно приспособиться к постоянно меняющейся среде. Таламус, как видно, таит в себе тайну многого из того, что происходит в коре больших полушарий».
О полифункциональности таламуса говорит наличие в нем около 120ядер, которые топографически можно разделить на три основные группы:переднюю,имеет проекции в поясную кору, медиальную —в лобную,латеральную —в теменную, височную, затылочную.
По функциональным признакам ядра зрительного бугра делят на три группы: специфические,образующие с соответствующими областями коры специфическую таламокортикальную систему,неспецифические,составляющие диффузную, неспецифическую таламокортикальную систему, иассоциативные.
В состав группы специфических ядервходят переднее вентральное, медиальное, вентролатеральное, постмедиальное, постлатеральное, а также медиальные и латеральные коленчатые тела. Специфические ядра содержат так называемые «релейные» (передаточные) нейроны, имеющие мало дендритов и длинный аксон, заканчивающийся вIII— IVслоях коры больших полушарий (соматосенсорная зона).
Если раздражать какое-либо из специфических ядер электрическими импульсами, то в соответствующих проекционных областях коры с коротким латентным периодом возникает реакция, названная первичным ответом.
Каждое из специфических ядер отвечает за свой вид чувствительности, так как они, так же как и кора больших полушарий, имеют соматотопическую локализацию, т.е. к ним поступают сигналы от тактильных, болевых, температурных, мышечных рецепторов, а также от интерорецепторов зон проекции блуждающего и чревного нервов.
Латеральное, или наружное, коленчатое тело —этоподкорковый центр зрения,таламическое реле для зрительных импульсов. Оно имеет афферентные связи с сетчаткой глаза и буграми четверохолмия и эфферентные —с затылочной долей коры больших полушарий.
Медиальное коленчатое тело —подкорковый, таламический Центр слуха,получает афферентные импульсы из латеральной петли и нижних бугров четверохолмия и посылает информацию в ьисочную долю коры больших полушарий.
К неспецифическим ядрамталамуса относятся: срединный Центр, парацентральное ядро, центральное медиальное и латеральное, субмедиальное, вентральное переднее, парафасцикулярное, ретикулярное ядро, перивентрикулярное и центральная серия масса.
Нейроны неспецифических ядер являются клетками ретикулярной формации, аксоны которых контактируют со всеми слоями коры больших полушарий, образуя диффузные связи. В свою очередь, к неспецифическим ядрам поступает информация от ретикулярной формации ствола мозга, лимбической системы, базальных ганглиев и специфических ядер таламуса.
Раздражение неспецифических ядер электрическим током вызывает возникновение в коре больших полушарий не локально, а диффузно специфической электрической активности, имеющей длинный латентный период и вид веретена, названной сонными веретенами, или реакцией вовлечения.
Ассоциативные ядраталамуса включают в себя медиодорсальное, латеральное дорсальное ядро и подушку. Нейроны этих ядер имеют разную форму и количество отростков, что позволяет им выполнять разнообразные функции, связанные с переработкой информации различных модальностей, после чего она поступает в 1-е и 2-е слои ассоциативной зоны коры, частично —в проекционные зоны коры (4-е и 5-е слои).
При поражении таламических ядер, отвечающих за переработку всей сенсорной информации, в том числе и болевой, могут возникать сильнейшие боли. С наличием застойного очага возбуждения в таламусе и коре больших полушарий связаны «фантомные боли» (в ампутированной конечности).
Таламус обеспечивает двигательные и вегетативные реакции, связанные с сосанием, жеванием, глотанием и смехом.
Функции мозжечка
Удаление мозжечка вызывает такие симптомы, как нарушение чувства равновесия, нарушение тонуса скелетной мускулатуры, кроме того, оно приводит к характерным изменениям в осуществлении произвольных движений.
Первые подробные описания признаков нарушений, которые появляются после удаления мозжечка у животных, были сделаны итальянским физиологом Л. Лючиани в 1893 году. Он установил, что после удаления мозжечка наблюдаются три переходящие друг в друга стадии нарушения движений. На первой стадии происходят изменения, зависящие не только от удаления мозжечка, но и от травм, сопутствующих операции, при которой повреждаются связанные с мозжечком отделы мозга, возникают внутричерепные кровоизлияния и отеки ткани. На второй стадии выпадает ряд функций, в осуществлении которых участвует мозжечок. На третьей стадии происходит некоторая компенсация выявленных нарушений. В первые дни после удаления мозжечка животное не может встать на лапы. Затем движения частично восстанавливаются, но остаются беспорядочными. Животное шатается, падает, совершает много лишних, размашистых и неточных движений. Для устойчивости животное широко расставляет лапы. Если у животного удалена только одна половина мозжечка, то конечности соответствующей стороны тела у него вытянуты и при попытке встать оно заваливается на бок или начинает ходить по кругу (манежные движения).
После того как первые тяжелые явления проходят и наступает частичная компенсация функций, животное начинает вставать, ходить, однако расстройства движений той половины тела, на которой удален мозжечок, у него сохраняются.
Человек, у которого наблюдаются мозжечковые расстройства, не может стоять с закрытыми глазами, движения его не координированы. Из-за нарушения координации мышц-антагонистов он не в состоянии несколько раз подряд согнуть и разогнуть любую из конечностей. То есть удаление или поражение мозжечка вызывает расстройство статических и статокинетических рефлексов, а также нарушение произвольных движений. Это свидетельствует о том, что влияние мозжечка распространяется, с одной стороны, на центры ствола мозга, участвующие в осуществлении установочных рефлексов и тонических рефлексов положения тела, с другой стороны, на моторную зону коры больших полушарий, участвующих в организации произвольных движений. Лючиани описал три симптома, характерных для поражения мозжечка: атонию, астению и астазию.
Атония (от греч. tonos — напряжение) — это резкое понижение тонуса мышц, которое возникает через несколько дней после удаления мозжечка. В первое время после операции тонус некоторых мышц, особенно мышц-разгибателей, бывает резко повышен, но через несколько дней он резко падает. Однако согласно наблюдениям Л. А. Орбели, еще через некоторое время тонус некоторых групп мышц может вновь оказаться повышенным. Поэтому считается, что в результате удаления мозжечка происходит не только атония, но и дистония, то есть нарушение регуляций мышечного тонуса.
Астазия (от греч. stasis — стояние) — неспособность стоять, проявляющаяся в появлении качательных и дрожательных движений. При этом состоянии теряется способность (без контроля зрения) правильно поддерживать вертикальную позу; для сохранения равновесия приходится широко расставлять ноги. Голова, туловище и конечности больного непрерывно дрожат и качаются.
Астения (от греч. astheneia — бессилие) — это легкая утомляемость вследствие повышения обмена веществ, связанного с тем, что движения производятся неэкономично, при участии большого количества мышечных групп.
В дальнейшем были описаны и другие симптомы, возникающие при нарушении функций мозжечка.
Атаксия (от греч. ataxia — беспорядок) заключается в недостаточной координации движений, в нарушении их точности. Походка человека становится неровной, зигзагообразной, ноги заплетаются. Его размашистые и слишком резкие движения напоминают движения пьяного человека.
Дисметрия (от греч. metron — мера, размер) — это избыточность или недостаточность амплитуды целенаправленного движения. Нарушение точности, скорости и направления движений.
Нарушение координации произвольных движений легко проверяется, когда больному предлагают закрыть глаза и быстро прикоснуться кончиком указательного пальца к кончику его собственного носа. Если функции мозжечка нарушены, сделать это чрезвычайно трудно. Проявлением нарушения координации произвольных движений является и потеря способности к быстрой смене фаз движений. Например, при разрушении мозжечка быстрые повороты кисти руки в противоположные стороны становятся практически невозможными.
Нарушение мозжечковых функций при дальнейшей жизни высших животных достаточно быстро и эффективно компенсируются за счет того, что новый мозжечок, который у них особенно хорошо развит, имеет обильные корково-мозжечковые связи. При постепенном возникновении поражения мозжечка (например, при медленном росте опухолей, разрушающих мозжечковую ткань) нарушения в некоторых случаях успевают компенсироваться по мере развития повреждения и в результате вообще не проявляются до самой смерти. Такая компенсация обеспечивается, скорее всего, за счет функции коры больших полушарий. Это говорит о том, что мозжечок можно рассматривать как структуру, в какой-то степени дублирующую активность коры при выполнении ею двигательных функций. То есть если в системе «моторная кора — мозжечок» постепенно выходит из строя один из компонентов, то двигательная функция продолжает осуществляться структурой, не захваченной поражением.
Кроме того, Э. А. Асратяном было показано, что нарушения функций после удаления мозжечка могут компенсироваться и благодаря возникновению новых условно-рефлекторных связей в коре полушарий мозга. Если в период относительной компенсации двигательных функций, произошедшей вследствие обучения, у животных без мозжечка удалить моторную зону коры, у них вновь возникнут столь же резкие нарушения состояния двигательного аппарата, как и в первое время после экстирпации мозжечка.
Физиология и функции мозжечка
Физиология и функции мозжечка
Анатомия мозжечка
Филогенетические и функциональные отделы можно рассматривать вместе (приблизительно), если разделить мозжечок на функциональные области. Клочково-узелковая доля также известна как вестибулярный мозжечок, поскольку поступившая к ней информация направляется в вестибулярные ядра; через вестибулярный аппарат она контролирует движения глаз (также она получает информацию от ствола мозга и через мост — от теменной и затылочной коры, что вносит свой вклад в координацию движений глаз).
Отделы червя (дорсальные) получают сигналы от ретикулярной формации, лобных зрительных полей, верхнего холмика и направляют их к глубоким мозжечковым ядрам (ядрам шатра мозжечка) в составе белого вещества, расположенного около узелка червя мозжечка От ядер шатра мозжечка волокна проходят к центрам взора ствола мозга и вестибулярным ядрам, контролирующим саккадические движения глаз.
Зоны мозжечка. Внутримозжечковые ядра показаны отдельно.
Парамедианная долька, спинальный мозжечок, включающая червь и паравермальную (прилежащую к червю) кору, получает информацию через спино-мозжечковые пути (кроме того, от вестибулярных ядер и ретикулярной формации, а также через мост — от коры больших полушарий). Червь передает сигналы к ядрам шатра мозжечка, а через волокна — к ретикулярной формации и вестибулярным ядам по ретикулоспинальному и вестибулоспинальному путям контролирует постуральные рефлексы головы и туловища.
К паравермальной области по спиномозжечковым путям подходят волокна от коры больших полушарий через мост и спинной мозг и отходят волокна к шаровидному к пробковидному ядрам. Эти два ядра объединены под названием межпозиционное ядро. Промежуточное ядро взаимодействует с красным ядром и таламусом, которые через волокна, соединяющие их со спинным мозгом (красноядерно-спинномозговой путь) и корой, контролируют и корректируют движения нижних конечностей.
Оставшаяся латеральная долька — самая крупная, посылает информацию через зубчатое ядро. Эту область также обозначают как мостовой мозжечок, поскольку к ней подходит большое количество волокон от противоположных ядер моста. Кроме того, ее называют новой частью мозжечка (неоцеребеллум), так как она получает информацию через ядра моста от обширных областей неокортекса больших полушарий (филогенетически наиболее поздних).
Неоцеребеллум значительно развит в человеческом мозге и играет огромную роль в планировании, начале движения, контроле и коррекции произвольных движений.
На поперечном срезе через нижний отдел моста и мозжечок показано расположение внутримозжечковых и вестибулярных ядер.
а) Предупреждающая функция мозжечка. Мозжечок выполняет сложные функции стабилизации позы и поддержания позы, описанные ниже.
1. Стабилизация позы. Поражение передней доли приводит к невозможности контролирования по ретикуло-спинномозговым волокнам изменений центра тяжести при ходьбе, что обусловливает нарушения походки.
2. Поддержание позы. На рисунке ниже показан эксперимент, в котором пациента требуют выполнить резкое разгибание в запястье и удержать его в разогнутом состоянии в течение 2 с в момент проведения электромиографии (ЭМГ) первичных разгибателей запястья (короткого и длинного лучевых разгибателей запястья) и главной мышцы-антагониста (лучевого сгибателя запястья). Результаты показали, что мышца-антагонист начала сокращаться до завершения движения, что привело к появлению осцилляций в мыш-цах-синергистах в период фиксации. Действие мышцы-анта-гониста направлено на предотвращение спонтанных колебательных движений (тремора), обусловленных вязкоупругими характеристиками мышц. Было показано, что эти нормальные и необходимые осцилляции могут быть блокированы при транскраниальной электромагнитной стимуляции верхней мозжечковой ножки или при поражении латеральной доли мозжечка.
Упреждающее сокращение икроножной мышцы для стабилизации туловища перед произвольным сокращением двуглавой мышцы плена.
Проще говоря, смещение верхнего отдела туловища от центра тяжести при произвольном движении головы или верхней конечности ожидается мозжечком.
Получив инструкции от премоторных областей лобной коры относительно предполагаемого движения, мозжечок осуществляет пропорциональные сокращения постуральных мышц в направлении от дистальных к проксимальным, от голеней до бедер и туловища для балансировки центра тяжести над опорным основанием (стопами).
Повреждение червя мозжечка нарушает нормальное упреждающее сокращение (через латеральный вестибуло-спинномозговой путь) медленных постуральных мышц, что приводит к потере равновесия в результате неспособности противостоять смещению центра тяжести, возникающему при движении разных частей тела. Поддержание позы.
Пациента просят произвести резкое разгибание в запястье с последующим коротким удержанием в разогнутом положении.
При регистрации ЭМГ видно, что сокращение сгибателей запястья начинается до завершения движения.
Обратите внимание на электрическую активность мышц-синергистов и антагонистов в положении «удержания».
ЭМГ-активность мышцы-антагониста более слабая, что показано на шкалах слева.
б) Мозжечок и высшие корковые функции. При позитронной эмиссионной томографии (ПЭТ) и фМРТ были получены данные о локальных изменениях кровотока и потребления кислорода. «Карты движений» построены на основе повторяющихся движений, таких как сжимание и разжимание кисти в кулак. Интересная особенность карт движений заключается в их очень малом размере и крайне медиальном расположении. До внедрения ПЭТ считали, что латеральное расширение задней доли мозжечка отвечает за праворукость. В настоящее время считают, что латеральное расширение может быть связано с когнитивными функциями (например, мышлением) и является отделом, взаимодействующим с латеральной предлобной (префронтальной) корой больших полушарий. Активация латерального расширения мозжечка становится максимальной при разговоре с доминированием одной из сторон, обусловленным возможными связями (с переключением в таламусе) с двигательным речевым центром лобной коры доминантного полушария. В некоторых случаях двигательный речевой центр осуществляет более строгий контроль в связи с тем, что латеральная доля мозжечка сильнее активизируется при функциональном обозначении объекта, например «копать» или «летать» вместо простого определения самого объекта — «лопата» или «самолет».
Мозжечковый когнитивно-аффективный синдром—недавно введенный собирательный термин, обозначающий функциональные корковые нарушения, возникающие вследствие внезапного тяжелого поражения мозжечка, например при тромбозе одной из трех пар мозжечковых артерий или неизбежного повреждения при удалении опухоли мозжечка. У таких пациентов развиваются когнитивные нарушения в виде снижения умственных способностей, невнимательности, появления грамматических ошибок в речи, нарушения пространственного чувства и частичной потери памяти. При сопутствующем поражении червя мозжечка возникают также аффективные (эмоциональные) нарушения, иногда в форме угнетения аффекта (притупления эмоциональных реакций) либо в виде аберрантного поведения. Когнитивно-аффективный синдром носит временный характер и может быть связан с уменьшением кровотока (при ПЭТ) в одной или более ассоциативных зонах, связанных с мозжечком корково-мосто-мозжечковыми волокнами. Помимо хорошо известных таламо-корковых путей к двигательной коре, мозжечок также может «управлять» таламическими нейронами, связанными с ассоциативными когнитивными и аффективными зонами.
Постурография — инструментальный метод исследования управления позой. Пациент стоит на платформе, а спонтанные колебания тела регистрируют датчики деформации под углами платформы. Информация от датчиков поступает в компьютер, что позволяет создать графическую запись колебаний тела в переднезаднем и боковом направлениях. Вначале исследование проводят с открытыми глазами, а затем — с закрытыми. Этот метод называют статической постурографией и используют для определения причины атаксии.
При динамической постурографии можно получить данные об эффекте внезапного смещения поддерживающей платформы на 4° кзади. В эту фазу исследования накладывают ЭМГ-электроды на икроножную (сгибатель стопы) и переднюю большеберцовую (разгибатель стопы) мышцы. В норме наблюдают тройную реакцию на смещение кзади:
(а) спинномозговое моносинаптическое рефлекторное сокращение икроножных мышц через 45 мс;
(б) полисинаптическое рефлекторное сокращение икроножных мышц через 95 мс;
(в) сокращение разгибателей стопы через гамма-петлю спустя 120 мс.
Восходящая дуга гамма-петли проходит в составе большеберцового и седалищного нервов в задний канатик через медиальный лемнисковый тракт к соматосенсорной коре; нисходящая дуга проходит через корково-спинномозговой путь, а также седалищный и малоберцовый нервы. Динамическая постурография позволяет дифференцировать широкое разнообразие заболеваний, поражающих центральную и периферическую нервную систему на различных уровнях.
Изображение фМРТ-активности у добровольца, производящего повторяющиеся движения пальцев правой кисти.
У мозжечка нашли принципиально новую функцию
Эксперименты на мышах, проведенные американскими учеными, позволили обнаружить ранее неизвестную функцию мозжечка. Оказалось, что этот отдел мозга принимает участие в вознаграждении, или внутреннем подкреплении — механизме закрепления поведения путем положительных реакций на совершенное действие. Результаты работы опубликованы в журнале Nature.
Многочисленные наблюдения за животными и людьми с различными поражениями мозжечка давно привели ученых к выводу, что его функция состоит в тонкой настройке произвольных и непроизвольных движений, что обеспечивает четкую координацию, быструю реакцию, равновесие, осанку и ритмичное дыхание. Это подтверждало и наличие тесных нервных связей этого отдела мозга с корковыми и подкорковыми двигательными и сенсорными центрами.
Большинство нейронов мозжечка представлены гранулярными клетками, число которых превышает количество всех остальных нейронов головного мозга, при этом они занимают менее 10 процентов его объема. Из-за небольшого размера и плотного расположения изучать возбуждение отдельных гранулярных клеток весьма сложно. В сочетании с тем, что предназначение мозжечка казалось вполне понятным и интересовало ученых значительно меньше функций больших полушарий и подкорковых структур, это привело к тому, что клеточная физиология этого отдела мозга изучена недостаточно.
Чтобы разобраться, как гранулярные клетки мозжечка мышей функционируют в процессе совершения движений, сотрудники Стэнфордского университета воспользовались двухфотонной кальциевой визуализацией, позволяющей следить за возбуждением отдельных нейронов в реальном времени. В качестве унифицированной двигательной активности было выбрано нажатие передней лапой на рычаг в обмен на порцию сладкого раствора, подаваемого автоматически ко рту через небольшой промежуток времени (двухфотонная визуализация требует фиксации головы животного, поэтому более объемные движения при ее проведении нежелательны).
Выяснилось, что определенные нейроны, как и ожидалось, активируются при движении лапой. Неожиданным стало то, что во время ожидания награды (сладкого раствора) активируется другая группа нейронов, которая «выключается» при ее получении. Чтобы проверить, является ли эта активация реакцией на сенсорное восприятие сладости, ученые стали случайным образом не давать раствор в ответ на нажатие рычага и выяснили, что это активирует еще одну группу гранулярных клеток. Изменяя время между нажатием на рычаг и количество раствора и сопоставляя активацию разных групп нейронов с двигательной активностью, исследователи убедились, что активность нескольких групп гранулярных клеток связана не с движениями, а с реакцией на ожидаемую, полученную и не полученную награду.
Таким образом, функции мозжечка оказались шире, чем считалось ранее, и включают не только координацию движений, но и работу с вознаграждением. По словам руководителя работы Марка Вагнера (Mark Wagner), полученные результаты позволят полнее интегрировать мозжечок в целостную картину функционирования мозга.
Это не первый случай, когда классические представления о строении и функциях отделов нервной системы оказались ошибочными. Так, в 2016 году франко-британский научный коллектив доказал, что граница между симпатическим и парасимпатическим отделами автономной нервной системы была проведена неправильно.
Читайте также:
- Паукообразные ангиомы
- Анатомия: Эпикард. Эндокард.
- Кровоток при венозной гипертонии. Венозный тонус при венозной гипертонии
- Золотистый стафилококк. Staphylococcus aureus. Эпидемиология золотистого стафилококка.
- Рентгенограмма, МРТ, сцинтиграфия при энхондроме
Текущая страница: 11 (всего у книги 20 страниц) [доступный отрывок для чтения: 5 страниц]
Клетки Пуркинье (грушевидные нейроны) – крупные клетки с телом грушевидной формы, содержащим хорошо развитые органеллы. От него в молекулярный слой отходят 2–3 первичные (стволовые) дендрита, интенсивно ветвящиеся в плоскости, перпендикулярной направлению извилины, с образованием конечных (терминальных) дендритов, достигающих поверхности молекулярного слоя. На дендритах находятся 60-100 тыс. шипиков – контактных зон возбуждающих синапсов, образуемых параллельными волокнами (аксонами клеток-зерен) и возбуждающих синапсов, образуемых лазящими волокнами.
Аксон клетки Пуркинье отходит от основания ее тела, одевается миелиновой оболочкой, пронизывает зернистый слой и проникает в белое вещество, являясь единственным эфферентным путем его коры. По ходу аксон отдает коллатерали, возвращающиеся в область расположения тел клеток Пуркинье и образующие тормозные синапсы на телах соседних клеток Пуркинье и клеток Гольджи.
Количество клеток Пуркинье заметно снижается при старении – на 20–40 % к 70–90 годам (по сравнению с их числом у 40–50 летних), что, вероятно, служит одной из причин нарушения функции мозжечка у пожилых людей.
Зернистый слой содержит близко расположенные тела клеток-зерен, больших клеток-зерен (клеток Гольджи), а также клубочки мозжечка – особые округлые сложные синаптические контактные зоны между моховидными волокнами, дендритами клеток-зерен и аксонами больших клеток-зерен.
Клетки-зерна – наиболее многочисленные нейроны коры мозжечка. Это мелкие нейроны со слабо развитыми органеллами и короткими дендритами, имеющими вид «птичьей лапки», на которых в клубочках мозжечка розетки моховидных волокон образуют многочисленные синаптические контакты. Аксоны клеток-зерен направляются в молекулярный слой, где Т-образно делятся на две ветви, идущие параллельно длине извилины (параллельные волокна), образуя возбуждающие синапсы на дендритах клеток Пуркинье, корзинчатых и звездчатых клеток и больших клеток-зерен. Через дендритное дерево каждой клетки Пуркинье проходит до 200–300 тыс. параллельных волокон, образуя на каждой клетке 60-100 тыс. синапсов (не все волокна образуют синапсы). Аксон каждой клетки-зерна образует связи с дендритами 250–500 клеток Пуркинье.
Большие клетки-зерна (клетки Гольджи) крупнее клеток-зерен, содержат хорошо развитые органеллы. Их аксоны в пределах клубочков мозжечка образуют синапсы на дендритах клеток-зерен, а длинные дендриты поднимаются в молекулярный слой, где ветвятся и образуют связи с параллельными волокнами. Большие клетки-зерна оказывают угнетающее влияние на активность клеток-зерен.
Афферентные волокна коры мозжечка включают моховидные (мшистые) и лазящие.
Моховидные (мшистые) волокна мозжечка проходят в составе спинно– и мостомозжечковых путей и, разветвляясь, заканчиваются расширениями (розетками) в особых контактных зонах – клубочках мозжечка, образуя синаптические контакты с дендритами клеток-зерен, на которых оканчиваются также и аксоны больших клеток-зерен. Клубочки мозжечка снаружи не полностью окружены плоскими отростками астроцитов.
Лазящие (лиановидные) волокна мозжечка идут в составе оливомозжечковых путей и проникают в кору из белого вещества, проходя через зернистый слой до ганглионарного и стелясь по телам и дендритам клеток Пуркинье, на которых они заканчиваются возбуждающими синапсами. Коллатеральные ветки лазящих волокон образуют синапсы на других нейронах всех типов, включая клетки-зерна, клетки Гольджи, звездчатые и корзинчатые клетки. С каждой клеткой Пуркинье обычно контактирует одно лазящее волокно.
Эфферентные волокна коры мозжечка представлены аксонами клеток Пуркинье, которые в виде миелиновых волокон направляются в белое вещество и достигает глубоких ядер мозжечка и вестибулярного ядра, на нейронах которых они образуют тормозные синапсы (клетки Пуркинье являются тормозными нейронами).
Межнейронные связи в коре мозжечка благодаря своему богатству обеспечивают переработку поступающей в нее разнообразной сенсорной информации. Возбуждающие импульсы поступают в кору мозжечка по лазящим и моховидным волокнам. В первом случае возбуждение передается на дендриты клеток Пуркинье непосредственно, во втором – через клубочки мозжечка – на дендриты клеток-зерен и далее по их аксонам (параллельным волокнам). Последние образуют возбуждающие синапсы также на дендритах корзинчатых и звездчатых клеток и больших клеток-зерен. Аксоны корзинчатых клеток образуют тормозные синапсы на телах клеток Пуркинье, а аксоны звездчатых клетокна их дендритах. Аксоны больших зернистых клеток в клубочках мозжечка образуют тормозные синапсы на дендритах клеток-зерен. Сформированные в коре мозжечка тормозные сигналы передаются с клеток Пуркинье на ядра мозжечка и вестибулярные ядра, а через них в конечном итоге контролируют активность нисходящих двигательных путей. В качестве основного медиаторов в возбуждающих синапсах используется глутамат и аспартат, в тормозных – гамма-аминомаслянная кислота.
Глиальные элементы коры мозжечка обеспечивают функции нейронов, располагаются во всех ее слоях и весьма разнообразны; они включают олигодендроциты (участвуют в образовании миелиновых оболочек нервных волокон), астроциты, микроглию. Астроциты своими уплощенными на концах отростками образуют периваскулярные пограничные мембраны (компонент гемато-энцефалического барьера) и оболочки вокруг клубочков мозжечка. Особый тип астроцитов (клетки, или волокна Бергмана) располагаются вблизи тел клеток Пуркинье; их отростки охватывают тела нейронов идут к поверхности молекулярного слоя, формируя поверхностную пограничную глиальную мембрану, окружают и поддерживают дендриты клеток Пуркинье.
7. Кора больших полушарий мозга представляет собой высший и наиболее сложно организованный нервный центр экранного типа, деятельность которого обеспечивает регуляцию разнообразных функций организма и сложные формы поведения.
Кора образована слоем серого вещества толщиной 3–5 мм на поверхности извилин (30 %) и в глубине борозд (70 %) общей площадью 1500–2500 см2 при объеме около 300 см3. Серое вещество содержит нервные клетки (около 10–15 млрд), нервные волокна и клетки нейроглии (более 100 млрд).
На основании различий плотности расположения и строения клеток (цитоархитектоники), хода волокон (миелоархитектоники) и функциональных особенностей различных участков коры в ней выделяют 52 нерезко разграниченные поля.
Нейроны коры – мультиполярные, различных размеров и форм, включают более 60 видов, среди которых выделены два основных типа – пирамидные и непирамидные.
Пирамидные клетки – специфический для коры полушарий тип нейронов; по разным оценкам, составляет 50–90 % всех нейроцитов коры. От апикального полюса их конусовидного (на срезах – треугольного) тела, который обращен к поверхности коры, отходит длинный (апикальный) покрытый шипиками дендрит, направляющийся в молекулярный слой коры, где он ветвится. От базальной и латеральных частей тела вглубь коры и в стороны от тела нейрона расходятся 5-16 более коротких боковых (латеральных) дендритов, которые, ветвясь, распространяются в пределах того же слоя, где находится тело клетки. От середины базальной поверхности тела отходит длинный и тонкий аксон, идущий в белое вещество, который на расстоянии 60–90 мкм начинает давать коллатерали. Размеры пирамидных нейронов варьируются от 10 до 140 мкм; различают гигантские, крупные, средние и малые пирамидные клетки.
Непирамидные клетки располагаются практически во всех слоя коры, воспринимая поступающие афферентные сигналы, а их аксоны распространяются в пределах самой коры, передавая импульсы на пирамидные нейроны. Эти клетки весьма разнообразны и преимущественно являются разновидностями звездчатых клеток. Они включают шипиковые, звездчатые, корзинчатые, аксоаксональные клетки, клетки-«канделябры», клетки с двойным букетом дендритов, горизонтальные клетки Кахаля, клетки Мартинотти и другие. Основная функция непирамидных клеток – интеграция нейронных цепей внутри коры.
Цитоархитектоника коры полушарий большого мозга
Нейроны коры располагаются нерезко разграниченными слоями (пластинками), которые обозначаются римскими цифрами и нумеруются снаружи внутрь.
I. Молекулярный слой располагается под мягкой мозговой оболочкой; содержит сравнительно небольшое число мелких нейронов – горизонтальных клеток Кахаля с длинными ветвящимися дендритами, отходящими в горизонтальной плоскости от веретеновидного тела. Их аксоны участвуют в образовании тангенциального сплетения волокон этого слоя. В молекулярном слое имеются многочисленные дендриты, и аксоны клеток более глубоко расположенных слоев, образующих межнейронные связи.
II. Наружный зернистый слой образован многочисленными мелкими пирамидными и звездчатыми клетками, дендриты которых ветвятся и поднимаются в молекулярный слой, а аксоны либо уходят в белое вещество, либо образуют дуги и также направляются в молекулярный слой.
III. Пирамидный слой значительно варьирует по ширине и максимально выражен в ассоциативных и сенсомоторных областях коры. В нем преобладают пирамидные клетки, размеры которых увеличиваются вглубь слоя от мелких до крупных. Апикальные дендриты пирамидных клеток направляются в молекулярный слой, а латеральные образуют синапсы с клетками данного слоя. Аксоны этих оканчиваются в пределах серого вещества или направляются в белое. Помимо пирамидных клеток, слой содержит разнообразные непирамидные нейроны. Слой выполняет преимущественно ассоциативные функции, связывая клетки как в пределах данного полушария, так и с противоположным полушарием.
IV. Внутренний зернистый слой широкий в зрительной и слуховой областях коры, а в сенсомоторной области практически отсутствует. Он образован мелкими пирамидными и звездчатыми клетками. В этом слое заканчивается основная часть таламических (шипиковых) афферентных волокон. Аксоны клеток этого слоя образуют связи с клетками выше– и нижележащих слое коры.
V. Ганглионарный слой образован крупными, а в области моторной коры (прецентральной извилины) – гигантскими пирамидными клетками (Беца). Апикальные дендриты пирамидных клеток достигают I слоя, образуя там верхушечные букеты, латеральные дендриты распространяются в пределах того же слоя. Аксоны гигантских и крупных пирамидных клеток проецируются на ядра головного и спинного мозга, наиболее длинные из них в составе пирамидных путей достигают каудальных сегментов спинного мозга. В V слое сосредоточено большинство корковых проекционных эфферентов.
VI. Слой полиморфных клеток образован разнообразными по форме нейронами (веретеновидными, звездчатыми, клетками Мартинотти). Наружные участки слоя содержат более крупные клетки, внутренние – более мелкие и редко расположенные. Аксоны этих клеток уходят в белое вещество в составе эфферентных путей, а дендриты проникают до молекулярного слоя. Аксоны мелких клеток Мартинотти поднимаются к поверхности коры и ветвятся в молекулярном слое.
8. Миелоархитектоника и организация коры
Нервные волокна коры полушарий большого мозга включают три группы:
· афферентные;
· ассоциативные и комиссуральные;
· эфферентные волокна.
Афферентные волокна в виде пучков в составе радиальных лучей приходят в кору от ниже расположенных отделов головного мозга, в частности, от зрительных бугров и коленчатых тел. Большая часть этих волокон заканчивается на уровне IV слоя.
Ассоциативные и комиссуральные волокна – внутрикорковые волокна, которые соединяют между собой различные области коры в том же или в другом полушариях, соответственно. Эти волокна образуют пучки, которые проходят параллельно поверхности коры в I слое (тангенциальные волокна), во II слое (полоска Бехтерева), в IV слое (наружная полоска Байярже) и в V слое (внутренняя полоска Байярже). Последние две системы являются сплетениями, образованными конечными отделами афферентных волокон.
Эфферентные волокна связывают кору с подкорковыми образованиями. Эти волокна идут в нисходящем направлении в составе радиальных лучей (например, пирамидные пути).
Типы строения коры больших полушарий
В отдельных участках коры, связанных с выполнением разных функций, преобладает развитие тех или иных ее слоев, на основании чего различают агранулярный и гранулярный типы коры.
Агранулярный тип коры характерен для ее моторных центров и отличается наибольшим развитием III, V и VI слоев коры при слабом развитии II и IV (зернистых) слоев. Такие участки коры служат источниками нисходящих проводящих путей центральной нервной системы.
Гранулярный тип коры характерен для областей расположения чувствительных корковых центров. Он отличается слабым развитием слоев, содержащих пирамидные клетки, при значительной выраженности зернистых (II и IV) слоев.
Модульный принцип организации коры полушарий большого мозга
В коре полушарий большого мозга описаны повторяющиеся блоки (модули) нейронов, которые рассматриваются как ее морфофункциональные единицы, способные к относительно автономной деятельности. Они имеют форму цилиндров, или колонок, диаметром 200–300 мкм (по некоторым данным, до 500 мкм и более), проходящих вертикально через всю толщу коры. В коре большого мозга человека имеется около 2–3 млн таких колонок, каждая содержит примерно 5000 нейронов. Внутри колонки выделяют также более мелкие мини-колонки, включающие структуры, непосредственно окружающие апикальные дендриты пирамидных клеток.
Колонка включает в себя следующие структуры:
· афферентные пути;
· систему локальных связей;
· эфферентные пути.
Афферентные пути
В центре колонки проходят примерно 100 возбуждающих кортико-кортикальных волокон – аксонов пирамидных клеток других колонок данного и противоположного полушарий. Они образуют окончания во всех слоях колонки (в том числе на клетках Мартинотти, шипиковых звездчатых клетках, латеральных дендритах пирамидных клеток) и проходят до I слоя, где образуют ветви, уходящие за ее пределы.
Специфические афферентные импульсы по таламокортикальным волокнам поступают на тела и дендриты пирамидных клеток и на шипиковые звездчатые клетки IV слоя (последние по своим аксонам передают их на апикальные и базальные дендриты пирамидных клеток).
Система локальных связей формируется вставочными нейронами колонки, которые включают более десятка типов клеток. Часть из них обладает тормозной функцией и регулирует преимущественно активность пирамидных клеток. Из тормозных нейронов колонки наибольшее значение имеют:
· аксо-аксональные клетки, тела которых лежат во II и III слоях, а аксоны идут горизонтально, отдавая многочисленные терминальные веточки, которые образуют тормозные синапсы на начальных сегментах аксонов пирамидных клеток II и III слоев;
· клетки-«канделябры» встречаются во всех внутренних слоях коры. Их аксонные коллатерали идут горизонтально и дают несколько восходящих и нисходящих веточек, которые образуют спиральные ветвления вокруг апикальных дендритов пирамидных клеток;
· корзинчатые клетки, которые располагаются во II слое, на границе III и IV, а также IV и V слоев. Их аксоны проходят горизонтально на расстояние до 2–3 мм и, оплетая тела крупных и средних пирамидных клеток, влияют на 20–30 соседних колонок. Колонковые корзинчатые клетки обеспечивают торможение пирамидных клеток по вертикали внутри данной колонки;
· клетки с двойным букетом дендритов, отходящих вертикально от полюсов тела, расположенного во II–III слоях. Их аксон дает коллатерали, образующие контакты с дендритами как пирамидных клеток, так и непирамидных (в том числе тормозных) нейронов. Первый тип контактов опосредует угнетение пирамидных клеток, а второй – их активацию путем снятия торможения;
· клетки с аксонным пучком (кисточкой) – звездчатые нейроны II слоя, аксоны которых ветвятся в I слое, образуя связи с дистальными сегментами апикальных дендритов пирамидных клеток и с горизонтальными ветвями кортико-кортикальных волокон.
Эфферентные пути
Аксоны средних пирамидных клеток III слоя колонки устанавливают связи преимущественно с соседними колонками и колонками противоположного полушария, а аксоны крупных и гигантских пирамидных клеток V слоя, помимо этого, направляются в подкорковые центры, образуя вместе с аксонами веретеновидных клеток VI слоя систему эфферентных волокон коры.
Белое вещество головного мозга представлено пучками нервных волокон, которые поднимаются к серому веществу коры из ствола мозга и спускаются к стволу мозга от корковых центров серого вещества.
Глия головного мозга
Головной мозг содержит все виды макроглии (астроцитарную, эпендимную и олигодендроглию), а также микроглию.
Астроцитарная глия обеспечивает микроокружение нейронов, выполняет опорную и трофическую функции в сером и белом веществе, участвует в метаболизме нейромедиаторов. Астроциты уплощенными пластинчатыми концевыми участками своих отростков образуют три вида пограничных глиальных мембран: периваскулярные, поверхностную и субэпендимальную.
Периваскулярные пограничные мембраны окружают капилляры головного мозга и входят в состав гемато-энцефалического барьера, отделяющего нейроны центральной нервной системы от крови и тканей внутренней среды. Гемато-энцефалический барьер препятствует проникновению в центральную нервную систему переносимых кровью токсических веществ, нейромедиаторов, гормонов, антибиотиков (что затрудняет лечение инфекционных поражений мозга и его оболочек), поддерживает электролитный баланс мозга, обеспечивает избирательный транспорт ряда веществ (глюкозы, аминокислот) из крови в мозг.
Гемато-энцефалический барьер включает в себя следующие компоненты:
· эндотелий кровеносных капилляров (с непрерывной выстилкой)главный компонент гемато-энцефалического барьера. Его клетки связаны мощными плотными соединениями, образование которых индуцируется контактом с астроцитами. Эндотелий препятствует переносу одних веществ, содержит специфические транспортные системы для других и метаболически изменяет третьи, превращая их в соединения, неспособные проникнуть в мозг;
· базальную мембрану капилляров;
· периваскулярную пограничную глиальную мембрану из отростков астроцитов.
Поверхностная пограничная глиальная мембрана (краевая глия) мозга, расположена под мягкой мозговой оболочкой, образует наружную границу головного и спинного мозга, отделяя ткани центральной нервной системы от мозговых оболочек.
Субэпендимальная (перивентрикулярная) пограничная глиальнаямембрана располагается под слоем эпендимы и входит в состав нейро-ликворного барьера, который отделяет нейроны от спинномозговой жидкости, называемой также ликвором. Этот барьер представлен эпендимной глией, ее базальной мембраной (присутствует не везде) и отростки астроцитов.
Эпендимная глия образует выстилку желудочков головного мозга и входит в состав гематоликворного барьера (между кровью и спинномозговой жидкости).
Олигодендроглия встречается в сером и белом веществе; она обеспечивает барьерную функцию, участвует в формировании миелиновых оболочек нервных волокон, регулирует метаболизм нейронов, захватывает нейромедиаторы.
Микроглия – специализированные макрофаги центральной нервной системы, обладающие значительной подвижностью. Активируется при воспалительных и дегенеративных заболеваниях. Выполняет в центральной нервной системе роль антиген-представляющих дендритных клеток.
9. Желудочки головного мозга – система анастомозирующих полостей, сообщающихся с центральным каналом спинного мозга и субарахноидальным пространством, содержащих спинномозговую жидкость и выстланных однослойным пластом клеток эпендимой глии низкопризматической или кубической формы с микроворсинками и ресничками на апикальной поверхности. В отдельных участках эпендимоциты обладают специфическими структурно-функциональными особенностями и принимают участие в выработке спинномозговой жидкости и химической сигнализации.
Сосудистые сплетения желудочков головного мозга – структуры в области крыши III и IV желудочков, а также части стенок боковых желудочков, которые обеспечивают выработку 70–90 % спинномозговой жидкости (10–30 % вырабатываются тканями центральной нервной системы и выделяются эпендимой вне области сосудистых сплетений). Они образованы ветвящимися выпячиваниями мягкой мозговой оболочки, которые вдаются в просвет желудочков и покрыты особыми кубическими хороидными эпендимоцитами.
Хороидные эпендимоциты содержат большое количество митохондрий, умеренно развитый синтетический аппарат, многочисленные пузырьки и лизосомы. Их выпуклая апикальная поверхность покрыта многочисленными микроворсинками, латеральные формируют интердигитации и связаны комплексами соединений, а базальная образует переплетающиеся выросты (базальный лабиринт). По поверхности эпендимы сосудистых сплетений перемещаются уплощенные отростчатые клетки Кольмера с хорошо развитым лизосомальным аппаратом, которые, очевидно, являются макрофагами. Слой эпендимоцитов располагается на базальной мембране, отделяющей его от подлежащей рыхлой волокнистой соединительной ткани мягкой мозговой оболочки, в которой находятся многочисленные фенестрированные капилляры и встречаются слоистые обызвествленные тельца (конкреции). Избирательная ультрафильтрация компонентов плазмы крови с образованием спинномозговой жидкости происходит из капилляров в просвет желудочков через гемато-ликворный барьер. Установлено, что клетки эпендимы способны также секретировать некоторые белки в спинномозговой жидкости и частично поглощать вещества из спинномозговой жидкости (очищая ее от продуктов метаболизма мозга, лекарств, в частности, антибиотиков).
Гемато-ликворный барьер включает в себя:
· цитоплазму фенестрированных эндотелиальных клеток капилляров;
· базальную мембрану эндотелия капилляров;
· перикапиллярное пространство – широкое, содержащее рыхлую волокнистую соединительную ткань мягкой мозговой оболочки с большим количеством макрофагов;
· базальную мембрану эпендимы;
· слой хороидных эпендимных клеток.
Спинномозговая жидкость циркулирует в субарахноидальном пространстве желудочках головного мозга и центральном канале спинного мозга. Ее общий объем у взрослого составляет 140–150 мл. Она вырабатывается в количестве 500 мл в сутки, полностью обновляясь каждые 4–7 ч и по составу отличается от сыворотки крови – в ней резко снижено содержание белка и повышены концентрации натрия, калия и хлора. Спинномозговая жидкость содержит отдельные лимфоциты (не более 5 клеток на 1 мл). Всасывание компонентов спинномозговой жидкости в кровь происходит в области ворсинок паутинного сплетения, вдающихся в расширенные субдуральные пространства по средней линии головного мозга; в незначительной части оно осуществляется эпендимой сосудистых сплетений. Нарушение нормального оттока и всасывания спинномозговой жидкости приводит к развитию гидроцефалии (характеризуется расширением желудочков и сдавлением мозга, а во внутриутробном периоде и раннем детстве – до закрытия швов черепатакже увеличением размеров головы).
Функции спинномозговой жидкости:
· защитная (амортизация ударов и сотрясений мозга);
· образование гидростатической оболочки вокруг мозга и его нервных корешков и сосудов, которые свободно взвешены в окружающей их спинномозговой жидкости (в силу небольшого различия плотности спинномозговой жидкости и тканей мозга), благодаря этому уменьшается натяжение корешков и сосудов;
· создание оптимальной жидкой среды, окружающей органы центральной нервной системы, в частности, поддержание постоянства ионного состава, обеспечивающего нормальную активность нейронов и глии;
· удаление метаболитов, выделяемых тканями мозга;
· интегративная – благодаря переносу гормонов и других биологически активных веществ.
Танициты – специализированные клетки эпендимы в латеральных участках стенки III желудочка, инфундибулярного кармана и срединного возвышения, которые обеспечивают связь между спинномозговой жидкостью в просвете желудочков мозга и кровью. Они имеют кубическую или призматическую форму, их апикальная поверхность покрыта микроворсинками и отдельными ресничками, а от базальной отходит длинный отросток, оканчивающийся пластинчатым расширением на кровеносном капилляре. Танициты поглощают из спинномозговой жидкости и транспортируют их по своему отростку в просвет сосудов.
10. Мозговые оболочки
Головной мозг защищен костями черепа, а спинной – позвонками и межпозвонковыми дисками; они окружены тремя мозговыми оболочками (снаружи внутрь): твердой, паутинной и мягкой, которые фиксируют эти органы в черепе и позвоночном канале и выполняют защитную, амортизирующую функции, обеспечивают выработку и всасывание спинномозговой жидкости.
Твердая мозговая оболочка (dura mater) образована плотной волокнистой соединительной тканью с высоким содержанием эластических волокон. В позвоночном канале между ней и телами позвонков имеется эпидуральное пространство, заполненное рыхлой волокнистой соединительной тканью, богатой жировыми клетками, и содержащее многочисленные кровеносные сосуды. Твердая оболочка головного мозга плотно сращена с надкостницей костей черепа, эпидуральное пространство отсутствует. Со стороны, обращенной к паутинной оболочке, она покрыта пластом плоских глиальных клеток (менинготелием). Твердая оболочка головного мозга образует ряд отростков, которые проникают между частями мозга, отделяя их друг от друга. Между ее складками имеются выстланные эндотелием пространства, заполненные венозной кровью – синусы (пазухи) твердой мозговой оболочки.
Паутинная мозговая оболочка (arachnoidea) неплотно прилежит к твердой мозговой оболочке, от которой ее отделяет узкое субдуральное пространство, содержащее небольшое количество тканевой жидкости отличной от спинномозговой жидкости. Паутинная оболочка образована соединительной тканью с высоким содержанием фибробластов; между ней и мягкой мозговой оболочкой располагается заполненное спинномозговой жидкостью широкое субарахноидальное пространство, которое пересекают многочисленные тонкие ветвящиеся соединительнотканные тяжи (трабекулы), отходящие от паутинной оболочки и вплетающиеся в мягкую мозговую оболочку. В этом пространстве проходят крупные кровеносные сосуды, ветви которых питают мозг. На поверхностях, обращенных в субдуральное и субарахноидальное пространство, паутинная оболочка выстлана слоем плоских глиальных клеток, покрывающим и трабекулы.
Ворсинки паутинной оболочки – (наиболее крупные из них – пахионовы грануляции – видны макроскопически) служат участками, через которые вещества из спинномозговой жидкости возвращаются в кровь. Они представляют собой бессосудистые выросты паутинной оболочки головного мозга грибовидной формы, содержащие сеть щелевидных пространств и выпячивающиеся в просвет синусов твердой мозговой оболочки. В них спинномозговая жидкость отделяется от крови слоем глиальных клеток и эндотелием синуса. Количество и размеры этих ворсинок увеличиваются с возрастом.
Мягкая мозговая оболочка (pia mater), образованная тонким слоем соединительной ткани с высоким содержанием мелких сосудов и нервных волокон, непосредственно покрывает поверхность мозга, повторяя его рельеф и проникая в борозды. На обеих поверхностях (обращенной в субарахноидальное пространство и прилежащей к тканям мозга) она покрыта менинготелием. Мягкая мозговая оболочка окружает сосуды, проникающие в мозг, образуя вокруг них периваскулярную паильную мембрану, которая в дальнейшем (по мере уменьшения калибра сосуда) сменяется периваскулярной пограничной глиальной мембраной, образованной астроцитами. От тканей центральной нервной системы мягкая мозговая оболочка отделяется наружной пограничной глиальной мембраной и базальной мембраной, образуемыми астроцитами.
В области крыши III и IV желудочков, и некоторых участков стенки боковых желудочков головного мозга мягкая мозговая оболочка совместно с эпендимой принимает участие в образовании сосудистых сплетений, вырабатывающих спинномозговую жидкость.
При черепно-мозговых травмах в результате повреждения сосудов кровь может скапливаться под надкостницей (эпидуральная гематома), в субдуральном пространстве (субдуральная гематома). Разрыв стенки сосудов, проходящих по поверхности мозга, вызывает кровотечение в субарахноидальное пространство с появлением крови в спинномозговую жидкость. Оболочки мозга нередко поражаются инфекционными процессами (менингитами), которые могут осложняться образованием спаек в субарахноидальном пространстве с нарушением оттока спинномозговой жидкости и развитием гидроцефалии. Менинготелий часто становится источником развития доброкачественных опухолей центральной нервной системы.