Рассмотрим более подробно строение
отростков нейрона и различия между
ними. Как уже было сказано, определяющее
отличие отростков — функциональное,
т.е. направление проведения нервного
импульса: по аксону он проводится от
тела клетки, по дендриту — к телу.
Существует и ряд анатомических различий,
однако они не абсолютны и возможен ряд
исключений из них. Тем не менее, для
типичных аксонов и дендритов характерны
следующие признаки:
-
Аксон один, а дендритов несколько (хотя
существуют нейроны и с одним дендритом). -
Дендрит короче аксона. Длина дендрита
обычно не более700 мкм, а аксон может
достигать длины 1 м. -
Дендрит плавно отходит от
тела нейрона и постепенно истончается.
Аксон, отходя от тела клетки, практически
не меняет диаметр на всем своем
протяжении. Диаметр различных аксонов
колеблется от 0,3 до 16 мкм. От их толщины
зависит скорость проведения нервного
импульса — чем аксон толще, тем скорость
больше. Участок, примыкающий к телу
нейрона (аксонный холмик), имеет большую
толщину, чем остальная часть аксона. -
Дендриты ветвятся на всем
своем протяжении под острым углом,
дихотомически (вильчато), ветвление
начинается от тела клетки. Аксон обычно
ветвится только на конце, образуя
контакты (синапсы) с другими клетками.
Конечные разветвления аксона называют
терминалами. В некоторых местах от
аксонов могут отходить под прямым углом
тонкие ответвления — коллатерали. -
Дендриты (по крайней мере,
в ЦНС) не имеют миелиновой оболочки,
аксоны часто окружены миелиновой
оболочкой (о миелиновой оболочке см.
ниже).
Кроме того, иногда на веточках
дендрита есть выросты
— шипики, являющиеся
характерной структурной особенностью
дендритов, особенно в коре больших
полушарий (рис. 6). Шипик состоит из двух
частей — тела и головки, размеры и форма
которых варьируют. Шипики значительно
увеличивают постсинаптическую поверхность
дендрита. Они являются лабильными
образованиями и при различных воздействиях
(или разных функциональных состояниях)
могут менять свою конфигурацию,
дегенерировать и вновь появляться. В
результате увеличивается либо уменьшается
число синапсов, меняется эффективность
передачи в них нервного сигнала и т.д.
Рис. 6. Шипик на
дендрите нейрона и контактирующие с
ним пресинаптические окончания. Стрелками
показано направление проведения
информации
Теперь, когда мы рассмотрели
строение дендритов и аксонов, следует
несколько детальнее изучить строение
синапса. Синапс, состоящий из одного
пре- и одного постсинаптического
окончаний, называют простым. Однако
большинство синапсов в ЦНС являются
сложными. В таких синапсах один аксон
может контактировать сразу с несколькими
дендритами благодаря нескольким
мембранным выростам на его окончании.
И наоборот, один дендрит за счет своих
шипиков может контактировать с несколькими
аксонами. Еще более сложную структуру
имеют синаптические гломерулы
(клубочки)— компактные
скопления окончаний нервных отростков
разных клеток, формирующие большое
количество взаимных синапсов. Обычно
гломерулы окружены оболочкой из глиальных
клеток. Особенно характерно присутствие
гломерул в тех зонах мозга, где происходит
наиболее сложная обработка сигналов —
в коре больших полушарий и мозжечка, в
таламусе.
Итак, нейрон состоит из тела
(сомы) и отростков. Как правило, один из
отростков существенно длиннее остальных.
Такой длинный отросток называют нервным
волокном. В ЦНС это
всегда аксон; в периферической нервной
системе это может быть как аксон, так и
дендрит. По волокнам проводятся нервные
импульсы, имеющие электрическую природу,
в связи с чем, каждое волокно нуждается
в изолирующей оболочке.
По типу такой оболочки все
волокна делятся на миелиновые
(мякотные) и безмиелиновые
(безмякотные).
Безмиелиновые нервные волокна покрыты
только оболочкой, образованной телом
шванновской (нейроглиальной) клетки.
Эти волокна имеют малый диаметр и
полностью либо частично погружены во
впячивание шванновской клетки. Одна
шванновская клетка может образовывать
оболочку вокруг нескольких аксонов
разного диаметра. Такие волокна называются
волокнами кабельного типа (рис. 7). Так
как длина аксона существенно больше
размеров шванновских клеток, оболочку
аксона образуют цепочки нейроглиальных
клеток. Скорость проведения нервного
импульса по таким волокнам — 0,5-2 м/с.
Многие нервные волокна
имеют миелиновую оболочку. Она также
образуется нейроглиальными клетками.
При формировании такой оболочки
олигодендроцит (в ЦНС) или шванновская
клетка (в периферической нервной системе)
обхватывает участок нервного волокна
(рис. 8). После этого образуется вырост
в виде язычка, который закручивается
вокруг волокна, образуя мембранные слои
(цитоплазма при этом из «язычка»
выдавливается). Таким образом, миелиновая
оболочка представляет собой двойные
слои клеточной мембраны и по своему
химическому составу является липопротеидом,
т.е. соединением липидов (жироподобных
веществ) и белков. Миелиновая оболочка
осуществляет электрическую
изоляцию нервного волокна наиболее
эффективно. Нервный импульс проводится
по такому волокну быстрее,
чем по лишенному миелина (скорость
проведения может достигать
120 м/с). Миелиновая оболочка начинается
немного
отступя от тела нейрона и заканчивается
примерно в 2
мкм от синапса. Она состоит из цилиндров
длиной 1,5-2
мм,
каждый из которых образован своей
глиальной клеткой.
Цилиндры разделяют перехваты Ранвье —
не покрытые
миелином участки волокна (их длина 0,5 —
2,5 мкм), играющие большую роль в быстром
проведении нервного импульса. В перехватах
от аксона могут отходить коллатерали.
Поверх миелиновой оболочки у мякотных
волокон есть еще
наружная оболочка — неврилемма,
образованная цитоплазмой и ядром
нейроглиальных клеток.
Рис. 7. Строение
нервных волокон:
А
—
миелиновое;
Б
—
безмиелиновая;
I
—
волокно;
2 —
миелиновый
слой; 3—
ядро
шванновской клетки; 4 —
микротрубочки;
5—Нейрофиламенты;
6 —
митохондрии;
7—соединительнотканная
оболочка
Рис.
8.
Строение миелиновой оболочки (А).
Образование
миелиновой оболочки шванновской клеткой
(Б): ‘
1
—
аксон;
2 —
слои
миелиновой оболочки; 3
— перехваты
Ранвье;
4
—
ядро
шванновской клетки. Стрелкой показано
направление
продвижения
выроста цитоплазматической мембраны
Миелин
имеет белый цвет. Именно это его свойство
позволило
разделить вещество нервной системы на
серое и белое. Тела
нейронов и их короткие отростки образуют
более темное серое
вещество, а
волокна — белое
вещество.
-
Классификация
нейронов
Нейроны очень
разнообразны по форме, величине,
количеству и способу отхождения от тела
отростков, химическому строению (имеется
в виду, в первую очередь, синтез тех или
иных нейромедиаторов) и т.д. (рис. 9). Тела
самых крупных нейронов достигают в
диаметре 100 — 120 мкм (гигантские пирамиды
Беца в коре больших полушарий), самых
мелких — 4-5 мкм (зернистые клетки коры
мозжечка). Приведем основные способы
классификации нервных клеток.
Рис.
9.
Различные типы нейронов:
А
—
псевдоуниполярный
нейрон спинномозгового ганглия;
Б
—
биполярный
нейрон сетчатки; В —
мотонейрон
спинного мозга;
Г
—
пирамидная
клетка коры больших полушарий (видно,
что дендриты покрыты
шипиками); Д —
клетка
Пуркинье мозжечка; I
—
тело
клетки;
2
—
дендрит;
3 —
аксон;
4 —
коллатерали
аксона
-
Функционально
нейроны подразделяются на чувствительные
(сенсорные), вставочные (переключательные,
интернейроны)
и исполнительные (двигательные или
мотонейроны и
др.). Сенсорные
нейроны —
это нервные клетки, воспринимающие
раздражения из внешней или внутренней
среды организма.
Интернейроны
(вставочные
нейроны) обеспечивают связь
между чувствительными и исполнительными
нейронами рефлекторных дугах. Общее
направление эволюции нервной системы
связано с увеличением числа интернейронов.
Из более
чем ста миллиардов нейронов человека
более 70% составляют
вставочные нейроны.
Исполнительные
нейроны,
управляющие сокращениями поперечно —
полосатых мышечных волокон, называют
двигательными
(мотонейронами). Они
образуют нервно-мышечные синапсы.
Исполнительные нейроны, называемые
вегетативными, управляют
работой внутренних органов, включая
гладкомышечные волокна, железистые
клетки и др.
2. По количеству отростков
нейроны делятся на униполярные,
псевдоуниполярные, биполярные и
мультиполярные.Большинство
нейронов нервной системы (и почти все
нейроны в ЦНС) — это мультиполярные
нейроны (см.
рис. 9, В — Д), они имеют
один аксон и несколько дендритов.
Биполярные
нейроны (см.
рис. 9, Б) имеют один аксон и один дендрит
и характерны для
периферических отделов анализаторных
систем. Униполярных
нейронов, имеющих только один отросток,
у человека практически
нет. Из тела псевдоуниполярного
нейрона (см.
рис.9,
А) выходит один отросток, который
практически сразу делится
на две ветви. Одна из них выполняет
функцию дендрита, а
другая — аксона. Такие нейроны находятся
в чувствительных спинномозговых
и черепных ганглиях. Их дендрит
морфологически
(по строению) похож на аксон: он гораздо
длиннее аксона и часто имеет миелиновую
оболочку.
3. По форме тела и характеру
ветвления отростков выделяют звездчатые,
пирамидные, веретеновидные, корзинчатые,
зернистые
и др. нейроны.
-
По длине аксона нейроны делят
на клетки типа Гольджи I и типа Гольджи
II (эта классификация разработана
итальянским ученым К.
Гольджи). Клетки Гольджи I
имеют длинный
аксон, выходящий за пределы области, в
которой находится
тело нейрона. Это, например, пирамидные
клетки коры
больших полушарий. У клеток Гольджи II
короткий и, как
правило, очень разветвленный аксон, не
выходящий за пределы
области, в которой находится тело
нейрона. Примером
таких нейронов могут быть корзинчатые
клетки коры мозжечка. -
Каждый нейрон синтезирует
только один основной нейромедиатор.
Для того чтобы определить нервную
клетку с этой
точки зрения к названию медиатора
добавляют окончание
«-ергический». Например, ацетилхолинергический
нейрон образует ацетилхолин,
глицинергический — глицин и т.д.
Соседние файлы в предмете Анатомия и физиология
- #
01.06.201515.58 Mб544ОТ НЕЙРОНА К МОЗГУ.doc
- #
- #
- #
- #
- #
Содержание
- Главное отличие — Аксон против Дендрита
- Что такое аксон
- Что такое дендрит
- Сходства между аксоном и дендритом
- Разница между аксоном и дендритом
Главное отличие — Аксон против Дендрита
Аксон и дендрит являются двумя компонентами нервных клеток. Нервные клетки являются структурными и функциональными единицами нервной системы животных. Они передают нервные импульсы в мозг, спинной мозг и тело, чтобы координировать функции организма. Аксон — это длинное коническое удлинение клеточного тела нервной клетки. У каждой нервной клетки есть аксон. Короткие структуры, которые простираются от тела клетки, называются дендритами.Одна нервная клетка имеет много дендритов. главное отличие между аксоном и дендритом является то, что аксон переносит нервные импульсы от тела клетки, тогда как дендриты переносят нервные импульсы от синапсов к телу клетки.
Ключевые области покрыты
1. Что такое аксон
— определение, характеристики, функции
2. Что такое дендрит
— определение, характеристики, функции
3. Каковы сходства между аксоном и дендритом
— Краткое описание общих черт
4. В чем разница между аксоном и дендритом
— Сравнение основных различий
Ключевые слова: аксон, аксонный бугорок, клеточное тело, дендриты, миелин, миелиновые нервные волокна, нервные клетки, немиелинизированные нервные волокна
Что такое аксон
Аксон — одиночная, длинная проекция нервной клетки. Аксоны уносят нервные импульсы от тела клетки. Мембрана, которая покрывает аксон, называется аксолеммой. Аксоплазма — это цитоплазма аксона. Аксоны разветвлены на своих терминальных концах. Кончики разветвленных концов образованы телодендрией. Терминалы аксона — это раздутые концы телодендрии. Терминалы аксона образуют синаптическую связь с дендроном другого нейрона или с эффекторным органом. Мембрана аксонного терминала связана с мембраной клетки-мишени. Везикулы, которые содержат нейротрансмиттеры, присутствуют в терминалах аксонов для передачи нервных импульсов посредством химических сигналов через синаптическую щель. Аксонный бугорок является начальным сегментом аксона. Это инициирует потенциал действия. Поперечное сечение аксона показано в Рисунок 1.
Рисунок 1: Поперечное сечение аксона
1 — аксон, 2 — ядро клетки Шванна, 3 — клетка Шванна, 4 — миелиновая оболочка
Два типа аксонов — миелинизированные аксоны и немиелинизированные аксоны. Миелиновая оболочка образует изоляцию на аксоне, чтобы увеличить скорость передачи нервных импульсов через аксон. Этот тип передачи нервных импульсов называется солевой проводимостью. Клетки Шванна секретируют миелин на аксонах периферической нервной системы. Олигодендроциты выделяют миелин на аксонах центральной нервной системы. Миелинизированные аксоны белого цвета. Пробелы в миелиновой оболочке называются узлами Ранвье. Белое вещество головного и спинного мозга состоит из миелинизированных аксонов.
Что такое дендрит
Дендрит — это коротко-разветвленное расширение, которое переносит нервные импульсы в тело клетки из синапсов. Многие дендриты распространяются из одноклеточного тела нервной клетки. Дендриты являются сильно разветвленными структурами. Эта сильно разветвленная природа увеличивает площадь поверхности, которая может принимать сигналы от синапсов. Дендриты и аксоны нервных клеток показаны в фигура 2.
Рисунок 2: Дендриты и Аксоны
Дендриты имеют сужающиеся концы. Поскольку дендриты представляют собой короткие проекции, они не миелинизируются.
Сходства между аксоном и дендритом
- И аксон, и дендрит являются проекциями клеточного тела нервной клетки.
- И аксон, и дендрит передают нервные импульсы.
- И аксон, и дендрит являются разветвленными структурами.
- И аксон, и дендрит содержат нейрофибриллы.
Разница между аксоном и дендритом
Определение
Axon: Аксон — это длинная нитевидная часть нервной клетки, которая проводит нервные импульсы от тела клетки.
Dendrite: Дендрит — это короткое разветвленное расширение нервной клетки, которое передает нервные импульсы в тело клетки из синапсов.
Число
Axon: Нервная клетка имеет только один аксон.
Dendrite: нервная клетка имеет много дендритов.
происхождения
Axon: Аксон возникает из конической проекции, называемой аксон бугорком.
Dendrite: Дендриты возникают непосредственно из нервной клетки.
длина
Axon: Аксоны очень длинные (несколько метров).
Dendrite: Дендриты очень короткие (около 1,5 мм).
Диаметр
Axon: Аксоны имеют одинаковый диаметр.
Dendrite: Дендриты имеют сужающиеся концы; поэтому диаметр постоянно уменьшается.
разветвление
Axon: Аксоны разветвлены на своих концах.
Dendrite: Дендриты все время разветвляются.
Синаптические ручки
Axon: Концы конечных ветвей аксона увеличены, чтобы сформировать синаптические ручки.
Dendrite: На кончиках ветвей дендритов не встречаются синаптические ручки.
Пузырьки
Axon: Синаптические ручки аксонов содержат везикулы с нейротрансмиттерами.
Dendrite: Дендриты не имеют пузырьков, которые содержат нейротрансмиттеры.
Гранулы Ниссля
Axon: Аксоны не содержат гранул Ниссля.
Dendrite: Дендриты содержат гранулы Ниссля.
Миелиновый / Non-миелинизированный
Axon: Аксоны могут быть миелинизированными или немиелинизированными.
Dendrite: Дендриты немиелинизированы.
Направление передачи
Axon: Аксоны уносят нервные импульсы от тела клетки.
Dendrite: Дендриты несут нервные импульсы к телу клетки.
Афферентные / Эфферентная
Axon: Аксоны образуют эфферентный компонент нервного импульса.
Dendrite: Дендриты образуют афферентный компонент нервного импульса.
Заключение
Аксон и дендрит — это два типа проекций нервной клетки. И аксоны, и дендриты передают нервные импульсы. Аксон длиннее дендрита. Диаметр аксона является однородным, в то время как дендриты состоят из сужающихся концов. Некоторые аксоны миелинизированы, чтобы ускорить передачу нервных импульсов. Аксоны передают нервные импульсы от тела клетки, а дендриты передают нервные импульсы к телу клетки. Поэтому основным отличием аксона от дендрита является направление передачи нервных импульсов.
Ссылка:
1. «Аксон». Википедия, Фонд Викимедиа, 1 сентября 2017 г.,
Обновлено: 02.04.2023
Морфологические отличия дендритов от аксонов
1. У отдельного нейрона имеется несколько дендритов, аксон всегда один.
2. Дендриты всегда короче аксона. Если размеры дендритов не превышают 1,5-2 мм, то аксоны могут достигать 1м и более.
3. Дендриты плавно отходят от тела клетки и постепенно истончаются. Аксон, резко отходя от сомы нейрона, сохраняет постоянный диаметр на значительном протяжении.
4. Дендриты ветвятся обычно под острым углом, и ветви направлены от клетки. Аксоны отдают коллатерали чаще всего под прямым углом, ориентация коллатералей не связана непосредственно с положением клеточного тела.
5. Рисунок дендритического ветвления у клеток одного типа более постоянен, чем разветвления аксона этих клеток.
6. Дендриты зрелых нейронов бывают покрыты дендритическими шипиками, которые отсутствуют на соме и начальной части дендритных стволов. Аксоны не имеют шипиков.
7. Дендриты никогда не имеют мякотной оболочки. Аксоны часто окружены миелином.
8. Дендриты имеют более регулярную пространственную организацию микротрубочек, в аксонах в основном преобладают нейрофиламенты и микротрубочки расположены менее упорядочение
9. В дендритах, в особенности в их проксимальных участках, имеются эндоплазматический ретикулум и рибосомы, чего нет в аксонах.
10. Поверхность дендритов в большинстве случаев контактирует с синоптическими бляшками и имеет активные зоны с постсинаптической специализацией.
у аксонов короткие отростки и ветвятся сильнее, у дендритов — длинные, до 1м и менее разветвленные, они образуют нервы
Морфологические отличия дендритов от аксонов
1. У отдельного нейрона имеется несколько дендритов, аксон всегда один.
2. Дендриты всегда короче аксона. Если размеры дендритов не превышают 1,5-2 мм, то аксоны могут достигать 1м и более.
3. Дендриты плавно отходят от тела клетки и постепенно истончаются. Аксон, резко отходя от сомы нейрона, сохраняет постоянный диаметр на значительном протяжении.
4. Дендриты ветвятся обычно под острым углом, и ветви направлены от клетки. Аксоны отдают коллатерали чаще всего под прямым углом, ориентация коллатералей не связана непосредственно с положением клеточного тела.
5. Рисунок дендритического ветвления у клеток одного типа более постоянен, чем разветвления аксона этих клеток.
6. Дендриты зрелых нейронов бывают покрыты дендритическими шипиками, которые отсутствуют на соме и начальной части дендритных стволов. Аксоны не имеют шипиков.
7. Дендриты никогда не имеют мякотной оболочки. Аксоны часто окружены миелином.
8. Дендриты имеют более регулярную пространственную организацию микротрубочек, в аксонах в основном преобладают нейрофиламенты и микротрубочки расположены менее упорядочение
9. В дендритах, в особенности в их проксимальных участках, имеются эндоплазматический ретикулум и рибосомы, чего нет в аксонах.
10. Поверхность дендритов в большинстве случаев контактирует с синоптическими бляшками и имеет активные зоны с постсинаптической специализацией.
у аксонов короткие отростки и ветвятся сильнее, у дендритов — длинные, до 1м и менее разветвленные, они образуют нервы
Нервная ткань отличается от других тканей нашего организма тем, что обладает особыми свойствами — возбудимостью и проводимостью . Эти свойства нервной ткани обусловлены особенностями её строения.
В состав нервной ткани входят клетки двух видов. Основные функции выполняют нейроны, а клетки-спутники (клетки нейроглии) служат опорой и обеспечивают обмен веществ.
Функции нейронов: генерирование и передача нервных импульсов; обработка и хранение поступающей информации.
Нервный импульс — это волна возбуждения (биоэлектрическая волна), распространяющаяся по нервным клеткам.
Нейрон — основная клетка нервной ткани. Он имеет тело и отростки двух типов. В теле нейрона располагается ядро и органоиды, а по отросткам передаются нервные импульсы.
Дендриты — это отростки, по которым нервные импульсы передаются к телу нейрона. Эти отростки сильно ветвятся. У нейрона может быть несколько дендритов.
Аксон — это отросток, по которому импульсы передаются от тела клетки. Аксон обычно ветвится только на конце. У каждого нейрона всего один аксон.
Аксоны часто окружены оболочкой из жироподобного вещества миелина. Это вещество имеет белый цвет. Скопления миелинизированных аксонов образуют белое вещество головного и спинного мозга. Тела нервных клеток и дендриты не покрыты миелином. Они серого цвета, а их группы составляют серое вещество центральной нервной системы.
Главными элементами синапса являются мембраны двух клеток (пресинаптическая и постсинаптическая мембраны) и пространство между ними (синаптическая щель).
В аксоне пресинаптического нейрона вырабатывается медиатор — особое вещество, с помощью которого происходит передача нервного импульса.
Под действием нервного импульса медиатор выделяется в синаптическую щель. Рецепторы постсинаптической мембраны реагируют на его появление и генерируют возникновение нервного импульса в следующем нейроне. Так в синапсе происходит химическая передача возбуждения с одной клетки на другую.
Чувствительные ( сенсорные ) нейроны проводят информацию от органов в мозг. Тела таких нейронов находятся в нервных узлах вне центральной нервной системы.
Другая группа нейронов передаёт информацию от головного и спинного мозга к органам. Это двигательные ( моторные ) нейроны. Их тела находятся в сером веществе центральной нервной системы, а аксоны находятся за пределами ЦНС.
Третий вид нейронов осуществляет связь между чувствительными и двигательными нейронами. Это вставочные нейроны, они находятся в головном и спинном мозге.
Нерв — это орган, в состав которого входят пучки нервных волокон, покрытые соединительнотканной оболочкой.
Нервы выполняют проводниковую функцию. Они связывают головной и спинной мозг с кожей, органами чувств и с внутренними органами.
Чувствительные нервы проводят нервные импульсы от рецепторов в мозг. В их состав входят дендриты чувствительных нейронов.
Двигательные нервы состоят из аксонов двигательных нейронов. Их функция — проведение импульсов от мозга к рабочим органам.
Смешанные нервы образованы чувствительными и двигательными волокнами и способные проводить импульсы как к ЦНС, так и от ЦНС.
Нервные сплетения представлены сетчатыми скоплениями нервных волокон разных нервов, связывающих ЦНС с внутренними органами, скелетными мышцами и кожей.
Нервная система состоит из нейронов (специфических клеток, имеющих отростки) и нейроглии (она заполняет пространство между нервными клетками в ЦНС). Главное отличие между ними заключается в направлении передачи нервного импульса. Дендриты – это принимающие ответвления, по ним сигнал идет к телу нейрона. Передающие клетки – аксоны – проводят сигнал от сомы к принимающим. Это могут быть не только отростки нейрона, но и мышцы.
Виды нейронов
Нейроны бывают трех видов: чувствительные – воспринимающие сигнал из организма или внешней среды, моторные – передающие импульс к органам, и вставочные, которые соединяют между собой два других типа.
Нервные клетки могут отличаться по размеру, форме, ветвлению и количеству отростков, длине аксона. Результаты исследований показали, что ветвление дендритов больше и сложнее у организмов, стоящих выше на ступенях эволюции.
Отличия аксонов и дендритов
Какова же разница между ними? Рассмотрим.
- Дендрит нейрона короче передающего отростка.
- Аксон всего один, принимающих ответвлений может быть много.
- Дендриты сильно ветвятся, а передающие отростки начинают разделяться ближе к концу, образуя синапс.
- Дендриты истончаются по мере удаления от тела нейрона, толщина аксонов практически неизменна по всей длине.
- Аксоны покрыты миелиновой оболочкой, состоящей из липидных и белковых клеток. Она выполняет роль изолятора и защищает отросток.
Поскольку нервный сигнал передается в виде электрического импульса, клеткам необходима изоляция. Её функции выполняет миелиновая оболочка. Она имеет мельчайшие разрывы, способствующие более быстрой передаче сигнала. Дендриты – это безоболочечные отростки.
Синапс
Место, в котором происходит контакт между ответвлениями нейронов или между аксоном и принимающей клеткой (например, мышечной), называется синапсом. В нем может участвовать всего по одному ответвлению от каждой клетки, но чаще всего контакт происходит между несколькими отростками. Каждый вырост аксона может контактировать с отдельным дендритом.
Сигнал в синапсе может передаваться двумя способами:
- Электрическим. Это происходит только в случае, когда ширина синаптической щели не превышает 2 нм. Благодаря такому маленькому разрыву импульс проходит через него, не задерживаясь.
- Химическим. Аксоны и дендриты вступают в контакт благодаря разнице потенциалов в мембране передающего отростка. С одной ее стороны частицы имеют положительный заряд, с другой – отрицательный. Это обусловлено разной концентрацией ионов калия и натрия. Первые находятся внутри мембраны, вторые – снаружи.
При прохождении заряда увеличивается проницаемость мембраны, и натрий входит в аксон, а калий выходит из него, восстанавливая потенциал.
Сразу после контакта отросток становится невосприимчивым к сигналам, через 1 мс способен к передаче сильных импульсов, через 10 мс возвращается в исходное состояние.
Дендриты – это принимающая сторона, передающая импульс от аксона телу нервной клетки.
Функционирование нервной системы
Нормальное функционирование нервной системы зависит от передачи импульса и химических процессов в синапсе. Не менее важную роль играет создание нервных связей. Способность к обучению присутствует у людей именно благодаря возможности организма формировать новые соединения между нейронами.
Любое новое действие на стадии изучения требует постоянного контроля со стороны мозга. По мере его освоения образуются новые нейронные связи, со временем действие начинает выполняться автоматически (например, умение ходить).
Дендриты – это передающие волокна, составляющие примерно треть всей нервной ткани организма. Благодаря их взаимодействию с аксонами люди имеют возможность обучаться.
Читайте также:
- Отчет резервиста о выполнении индивидуального плана в доу
- Кто такой машинист кратко
- 5 школа саяногорск педагогический состав
- Краткосрочный план урока по русскому языку по обновленной программе 8 класс
- Игровая деятельность на музыкальных занятиях в доу
Дендрит, аксон и синапс, строение нервной клетки
Клеточная мембрана
Этот элемент обеспечивает функцию барьера, отделяя внутреннюю среду от находящейся снаружи нейроглии. Тончайшая пленка состоит из двух слоев белковых молекул и находящихся между ними фосфолипидов. Строение мембраны нейрона предполагает наличие в ее структуре специфических рецепторов, отвечающих за узнавание раздражителей. Они обладают выборочной чувствительностью и при необходимости «включаются» при наличии контрагента. Связь внутренней и наружной сред происходит через канальцы, пропускающие ионы кальция или калия. При этом они открываются или закрываются под действием белковых рецепторов.
Благодаря мембране клетка имеет свой потенциал. При передаче его по цепочке происходит иннервация возбудимой ткани. Контакт мембран соседствующих нейронов происходит в синапсах. Поддержание постоянства внутренней среды – это важная составляющая жизнедеятельности любой клетки. И мембрана тонко регулирует концентрацию в цитоплазме молекул и заряженных ионов. При этом происходит транспорт их в необходимых количествах для протекания реакций метаболизма на оптимальном уровне.
Классификация
Структурная классификация
На основании числа и расположения дендритов и аксона нейроны делятся на безаксонные, униполярные нейроны, псевдоуниполярные нейроны, биполярные нейроны и мультиполярные (много дендритных стволов, обычно эфферентные) нейроны.
Безаксонные нейроны — небольшие клетки, сгруппированы вблизи спинного мозга в межпозвоночных ганглиях, не имеющие анатомических признаков разделения отростков на дендриты и аксоны. Все отростки у клетки очень похожи. Функциональное назначение безаксонных нейронов слабо изучено.
Униполярные нейроны — нейроны с одним отростком, присутствуют, например в сенсорном ядре тройничного нерва в среднем мозге. Многие морфологи считают, что униполярные нейроны в теле человека и высших позвоночных не встречаются.
Биполярные нейроны — нейроны, имеющие один аксон и один дендрит, расположенные в специализированных сенсорных органах — сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях.
Мультиполярные нейроны — нейроны с одним аксоном и несколькими дендритами. Данный вид нервных клеток преобладает в центральной нервной системе.
Псевдоуниполярные нейроны — являются уникальными в своём роде. От тела отходит один отросток, который сразу же Т-образно делится. Весь этот единый тракт покрыт миелиновой оболочкой и структурно представляет собой аксон, хотя по одной из ветвей возбуждение идёт не от, а к телу нейрона. Структурно дендритами являются разветвления на конце этого (периферического) отростка. Триггерной зоной является начало этого разветвления (то есть находится вне тела клетки). Такие нейроны встречаются в спинальных ганглиях.
Функциональная классификация
По положению в рефлекторной дуге различают афферентные нейроны (чувствительные нейроны), эфферентные нейроны (часть из них называется двигательными нейронами, иногда это не очень точное название распространяется на всю группу эфферентов) и интернейроны (вставочные нейроны).
Афферентные нейроны (чувствительный, сенсорный, рецепторный или центростремительный). К нейронам данного типа относятся первичные клетки органов чувств и псевдоуниполярные клетки, у которых дендриты имеют свободные окончания.
Эфферентные нейроны (эффекторный, двигательный, моторный или центробежный). К нейронам данного типа относятся конечные нейроны — ультиматные и предпоследние — не ультиматные.
Ассоциативные нейроны (вставочные или интернейроны) — группа нейронов осуществляет связь между эфферентными и афферентными.
Секреторные нейроны — нейроны, секретирующие высокоактивные вещества (нейрогормоны). У них хорошо развит комплекс Гольджи, аксон заканчивается аксовазальными синапсами.
Морфологическая классификация
Морфологическое строение нейронов многообразно. При классификации нейронов применяют несколько принципов:
- учитывают размеры и форму тела нейрона;
- количество и характер ветвления отростков;
- длину аксона и наличие специализированных оболочек.
По форме клетки, нейроны могут быть сферическими, зернистыми, звездчатыми, пирамидными, грушевидными, веретеновидными, неправильными и т. д. Размер тела нейрона варьирует от 5 мкм у малых зернистых клеток до 120—150 мкм у гигантских пирамидных нейронов.
По количеству отростков выделяют следующие морфологические типы нейронов:
- униполярные (с одним отростком) нейроциты, присутствующие, например, в сенсорном ядре тройничного нерва в среднем мозге;
- псевдоуниполярные клетки, сгруппированные вблизи спинного мозга в межпозвоночных ганглиях;
- биполярные нейроны (имеют один аксон и один дендрит), расположенные в специализированных сенсорных органах — сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях;
- мультиполярные нейроны (имеют один аксон и несколько дендритов), преобладающие в ЦНС.
Строение нейронов
Схема нейрона
Тело клетки
Тело нервной клетки состоит из протоплазмы (цитоплазмы и ядра), ограниченной снаружи мембраной из липидного бислоя. Липиды состоят из гидрофильных головок и гидрофобных хвостов. Липиды располагаются гидрофобными хвостами друг к другу, образуя гидрофобный слой. Этот слой пропускает только жирорастворимые вещества (напр. кислород и углекислый газ). На мембране находятся белки: в форме глобул на поверхности, на которых можно наблюдать наросты полисахаридов (гликокаликс), благодаря которым клетка воспринимает внешнее раздражение, и интегральные белки, пронизывающие мембрану насквозь, в которых находятся ионные каналы.
Нейрон состоит из тела диаметром от 3 до 130 мкм. Тело содержит ядро (с большим количеством ядерных пор) и органеллы (в том числе сильно развитый шероховатый ЭПР с активными рибосомами, аппарат Гольджи), а также из отростков. Выделяют два вида отростков: дендриты и аксон. Нейрон имеет развитый цитоскелет, который проникает в его отростки. Цитоскелет поддерживает форму клетки, его нити служат «рельсами» для транспорта органелл и упакованных в мембранные пузырьки веществ (например, нейромедиаторов). Цитоскелет нейрона состоит из фибрилл разного диаметра: Микротрубочки (Д = 20—30 нм) — состоят из белка тубулина и тянутся от нейрона по аксону, вплоть до нервных окончаний. Нейрофиламенты (Д = 10 нм) — вместе с микротрубочками обеспечивают внутриклеточный транспорт веществ. Микрофиламенты (Д = 5 нм) — состоят из белков актина и миозина, особенно выражены в растущих нервных отростках и в нейроглии.(Нейроглия, или просто глия (от др.-греч. νεῦρον — волокно, нерв + γλία — клей), — совокупность вспомогательных клеток нервной ткани. Составляет около 40 % объёма ЦНС. Количество глиальных клеток в мозге примерно равно количеству нейронов).
В теле нейрона выявляется развитый синтетический аппарат, гранулярная эндоплазматическая сеть нейрона окрашивается базофильно и известна под названием «тигроид». Тигроид проникает в начальные отделы дендритов, но располагается на заметном расстоянии от начала аксона, что служит гистологическим признаком аксона. Нейроны различаются по форме, числу отростков и функциям. В зависимости от функции выделяют чувствительные, эффекторные (двигательные, секреторные) и вставочные. Чувствительные нейроны воспринимают раздражения, преобразуют их в нервные импульсы и передают в мозг. Эффекторные (от лат. effectus — действие) — вырабатывают и посылают команды к рабочим органам. Вставочные — осуществляют связь между чувствительными и двигательными нейронами, участвуют в обработке информации и выработке команд.
Различается антероградный (от тела) и ретроградный (к телу) аксонный транспорт.
Дендриты и аксон
Основные статьи: Дендрит и Аксон
Схема строения нейрона
Аксон — длинный отросток нейрона. Приспособлен для проведения возбуждения и информации от тела нейрона к нейрону или от нейрона к исполнительному органу.
Дендриты — короткие и сильно разветвлённые отростки нейрона, служащие главным местом для образования влияющих на нейрон возбуждающих и тормозных синапсов (разные нейроны имеют различное соотношение длины аксона и дендритов), и которые передают возбуждение к телу нейрона. Нейрон может иметь несколько дендритов и обычно только один аксон. Один нейрон может иметь связи со многими (до 20 тысяч) другими нейронами.
Дендриты делятся дихотомически, аксоны же дают коллатерали. В узлах ветвления обычно сосредоточены митохондрии.
Дендриты не имеют миелиновой оболочки, аксоны же могут её иметь. Местом генерации возбуждения у большинства нейронов является аксонный холмик — образование в месте отхождения аксона от тела. У всех нейронов эта зона называется триггерной.
Синапс
Основная статья: Синапс
Си́напс (греч. σύναψις, от συνάπτειν — обнимать, обхватывать, пожимать руку) — место контакта между двумя нейронами или между нейроном и получающей сигнал эффекторной клеткой. Служит для передачи нервного импульса между двумя клетками, причём в ходе синаптической передачи амплитуда и частота сигнала могут регулироваться. Одни синапсы вызывают деполяризацию нейрона и являются возбуждающими, другие — гиперполяризацию и являются тормозными. Обычно для возбуждения нейрона необходимо раздражение от нескольких возбуждающих синапсов.
Термин был введён английским физиологом Чарльзом Шеррингтоном в 1897 г.
Литература
- Поляков Г. И., О принципах нейронной организации мозга, М: МГУ, 1965
- Косицын Н. С. Микроструктура дендритов и аксодендритических связей в центральной нервной системе. М.: Наука, 1976, 197 с.
- Немечек С. и др. Введение в нейробиологию, Avicennum: Прага, 1978, 400 c.
- Мозг (сборник статей: Д. Хьюбел, Ч. Стивенс, Э. Кэндел и дp. — выпуск журнала Scientific American (сентябрь 1979)). М. :Миp, 1980
- Савельева-Новосёлова Н. А., Савельев А. В. Устройство для моделирования нейрона. А. с. № 1436720, 1988
- Савельев А. В. Источники вариаций динамических свойств нервной системы на синаптическом уровне // журнал “Искусственный интеллект”, НАН Украины. — Донецк, Украина, 2006. — № 4. — С. 323—338.
Строение нейрона
На рисунке приведено строение нейрона. Он состоит из основного тела и ядра. От клеточного тела идет ответвление многочисленных волокон, которые именуются дендритами.
Мощные и длинные дендриты называются аксонами, которые в действительности намного длиннее, чем на картинке. Их протяженность варьируется от нескольких миллиметров до более метра.
Аксоны играют ведущую роль в передаче информации между нейронами и обеспечивают работу всей нервной системы.
Место соединения дендрита (аксона) с другим нейроном называется синапсом. Дендриты при наличии раздражителей могут разрастись настолько сильно, что станут улавливать импульсы от других клеток, что приводит к образованию новых синаптических связей.
Синаптические связи играют существенную роль в формировании личности человека. Так, личность с устоявшимся позитивным опытом будет смотреть на жизнь с любовью и надеждой, человек, у которого нейронные связи с негативным зарядом, станет со временем пессимистом.
Волокна
Вокруг нервных отростков независимо располагаются глиальные оболочки. В комплексе они формируют нервные волокна. Ответвления в них называются осевыми цилиндрами. Существуют безмиелиновые и миелиновые волокна. Они отличаются по строению глиальной оболочки. Безмиелиновые волокна имеют достаточно простое устройство. Подходящий к глиальной клетке осевой цилиндр прогибает ее цитолемму. Цитоплазма смыкается над ним и формирует мезаксон — двойную складку. Одна глиальная клетка может содержать несколько осевых цилиндров. Это «кабельные» волокна. Их ответвления могут переходить в расположенные по соседству глиальные клетки. Импульс проходит со скоростью 1-5 м/с. Волокна данного типа обнаруживаются в ходе эмбриогенеза и в постганглионарных участках вегетативной системы. Миелиновые сегменты толстые. Они расположены в соматической системе, иннервирующей мускулатуру скелета. Леммоциты (глиальные клетки) проходят последовательно, цепью. Они формируют тяж. В центре проходит осевой цилиндр. В глиальной оболочке присутствуют:
- Внутренний слой нервных клеток (миелиновый). Он считается основным. На некоторых участках между слоями цитолеммы присутствуют расширения, образующие миелиновые насечки.
- Периферический слой. В нем присутствуют органеллы и ядро – нейрилемма.
- Толстая базальная мембрана.
Внутреннее строение нейронов
Ядро нейрона
обычно крупное, округлое, с мелкодисперсным
хроматином, 1-3 крупными ядрышками. Это
отражает высокую интенсивность
процессов транскрипции в ядре нейрона.
Клеточная оболочка
нейрона способна генерировать и проводить
электрические импульсы. Это достигается
изменением локальной проницаемости
её ионных каналов для Na+ и К+, изменением
электрического потенциала и быстрым
перемещением его по цитолемме (волна
деполяризации, нервный импульс).
В цитоплазме нейронов
хорошо развиты все органоиды общего
назначения. Митохондрии
многочисленны и обеспечивают высокие
энергетические потребности нейрона,
связанные со значительной активностью
синтетических процессов, проведением
нервных импульсов, работой ионных
насосов. Они характеризуются быстрым
изнашиванием и обновлением (рис 8-3).
Комплекс
Гольджи очень
хорошо развит. Не случайно эта органелла
впервые была описана и демонстрируется
в курсе цитологии именно в нейронах.
При световой микроскопии он выявляется
в виде колечек, нитей, зёрнышек,
расположенных вокруг ядра (диктиосомы).
Многочисленные лизосомы
обеспечивают постоянное интенсивное
разрушение изнашиваемых компонентов
цитоплазмы нейрона (аутофагия).
Рис.
8-3. Ультрастуктурная организация
тела нейрона.
Д. Дендриты. А.
Аксон.
1. Ядро (ядрышко
показано стрелкой).
2. Митохондрии.
3. Комплекс
Гольджи.
4. Хроматофильная
субстанция (участки гранулярной
цитоплазмотической сети).
5. Лизосомы.
6. Аксонный
холмик.
7. Нейротрубочки,
нейрофиламенты.
(По В. Л. Быкову).
Для нормального
функционирования и обновления структур
нейрона в них должен быть хорошо развит
белоксинтезирующий аппарат (рис.
8-3). Гранулярная
цитоплазматическая сеть
в цитоплазме нейронов образует скопления,
которые хорошо окрашиваются основными
красителями и видны при световой
микроскопии в виде глыбок хроматофильного
вещества
(базофильное, или тигровое вещество,
субстанция Ниссля). Термин субстанция
Ниссля
сохранился в честь учёного Франца
Ниссля, впервые ее описавшего. Глыбки
хроматофильного вещества расположены
в перикарионах нейронов и дендритах,
но никогда не встречаются в аксонах,
где белоксинтезирующий аппарат развит
слабо (рис. 8-3). При длительном раздражении
или повреждении нейрона эти скопления
гранулярной цитоплазматической сети
распадаются на отдельные элементы, что
на светооптическом уровне проявляется
исчезновением субстанции Ниссля
(хроматолиз,
тигролиз).
Цитоскелет
нейронов хорошо развит, образует
трёхмерную сеть, представленную
нейрофиламентами (толщиной 6-10 нм) и
нейротрубочками (диаметром 20-30 нм).
Нейрофиламенты и нейротрубочки
связаны друг с другом поперечными
мостиками, при фиксации они склеиваются
в пучки толщиной 0,5-0,3 мкм, которые
окрашиваются солями серебра.На
светооптическом уровне они описаны под
названием нейрофибрилл.
Они образуют
сеть в перикарионах нейроцитов, а в
отростках лежат параллельно (рис. 8-2).
Цитоскелет поддерживает форму клеток,
а также обеспечивает транспортную
функцию – участвует в транспорте веществ
из перикариона в отростки (аксональный
транспорт).
Включения
в цитоплазме нейрона представлены
липидными каплями, гранулами
липофусцина
– «пигмента
старения» – жёлто-бурого цвета
липопротеидной природы. Они представляют
собой остаточные тельца (телолизосомы)
с продуктами непереваренных структур
нейрона. По-видимому, липофусцин
может накапливаться и в молодом возрасте,
при интенсивном функционировании и
повреждении нейронов. Кроме того, в
цитоплазме нейронов черной субстанции
и голубого пятна ствола мозга имеются
пигментные включения меланина.
Во многих нейронах головного мозга
встречаются включения гликогена.
Нейроны не способны к делению, и с
возрастом их число постепенно уменьшается
вследствие естественной гибели. При
дегенеративных заболеваниях (болезнь
Альцгеймера, Гентингтона, паркинсонизм)
интенсивность апоптоза возрастает и
количество нейронов в определённых
участках нервной системы резко
уменьшается.
Нервные клетки
Чтобы обеспечивать множественные связи, нейрон имеет особое строение. Кроме тела, в котором сосредоточены главные органеллы, присутствуют отростки. Часть их короткие (дендриты), обычно их несколько, другой (аксон) – он один, и его длина в отдельных структурах может достигать 1 метра.
Строение нервной клетки нейрона имеет такой вид, чтобы обеспечивать наилучший взаимообмен информацией. Дендриты сильно ветвятся (как крона дерева). Своими окончаниями они взаимодействуют с отростками других клеток. Место их стыка называют синапсом. Там происходит прием-передача импульса. Его направление: рецептор – дендрит – тело клетки (сома) – аксон – реагирующий орган или ткань.
Внутреннее строение нейрона по составу органелл сходно с другими структурными единицами тканей. В нем присутствует ядро и цитоплазма, ограниченная мембраной. Внутри располагаются митохондрии и рибосомы, микротрубочки, эндоплазматическая сеть, аппарат Гольджи.
Синапсы
С их помощью клетки нервной системы соединяются между собой. Существуют разные синапсы: аксо-соматические, -дендритические, -аксональные (главным образом тормозного типа). Также выделяют электрические и химические (первые выявляются достаточно редко в организме). В синапсах различают пост- и пресинаптическую части. Первая содержит мембрану, в которой присутствуют высокоспецифичные протеиновые (белковые) рецепторы. Они реагируют только на определенные медиаторы. Между пре- и постсинаптической частями расположена щель. Нервный импульс достигает первой и активирует особые пузырьки. Они переходят к пресинаптической мембране и попадают в щель. Оттуда они влияют на рецептор постсинаптической пленки. Это провоцирует ее деполяризацию, передающуюся, в свою очередь, посредством центрального отростка следующей нервной клетки. В химическом синапсе передача информации осуществляется только по одному направлению.
Развитие
Закладка нервной ткани происходит на третьей неделе эмбрионального периода. В это время формируется пластинка. Из нее развиваются:
- Олигодендроциты.
- Астроциты.
- Эпендимоциты.
- Макроглия.
В ходе дальнейшего эмбриогенеза нервная пластинка превращается в трубку. Во внутреннем слое ее стенки располагаются стволовые вентрикулярные элементы. Они пролиферируют и отходят кнаружи. В этой области часть клеток продолжает делиться. В результате они разделяются на спонгиобласты (компоненты микроглии), глиобласты и нейробласты. Из последних формируются нервные клетки. В стенке трубки выделяется 3 слоя:
- Внутренний (эпендимный).
- Средний (плащевой).
- Внешний (краевой) – представлен белым мозговым веществом.
На 20-24 неделе в краниальном сегменте трубки начинается образование пузырей, которые являются источником формирования головного мозга. Оставшиеся отделы служат для развития спинного мозга. От краев нервного желоба отходят клетки, участвующие в образовании гребня. Он располагается между эктодермой и трубкой. Из этих же клеток формируются ганглиозные пластинки, служащие основой для миелоцитов (пигментных кожных элементов), периферических нервных узлов, меланоцитов покрова, компонентов APUD-системы.
Классификация
Нейроны разделяют на виды в зависимости от типа медиатора (посредника проводящего импульса) выделяемого на окончаниях аксона. Это может быть холин, адреналин и пр. От места расположения в отделах ЦНС они могут относиться к соматическим нейронам или к вегетативным. Различают воспринимающие клетки (афферентные) и передающие обратные сигналы (эфферентные) в ответ на раздражение. Между ними могут находиться итернейроны, отвечающие за обмен информацией внутри ЦНС. По типу ответной реакции клетки могут тормозить возбуждение или, наоборот, повышать его.
По состоянию их готовности различают: «молчащие», которые начинают действовать (передают импульс) только при наличии определенного вида раздражения, и фоновые, что постоянно осуществляют мониторинг (непрерывная генерация сигналов). В зависимости от типа воспринимаемой от сенсоров информации меняется и строение нейрона. В этой связи их классифицируют на бимодальные, с относительно простым ответом на раздражение (два взаимосвязанных вида ощущения: укол и — как результат — боль, и полимодальные. Это более сложная структура – полимодальные нейроны (специфическая и неоднозначная реакция).
Что такое нейрон нейронные связи
В переводе с греческого нейрон, или как его еще называют неврон, означает «волокно», «нерв». Нейрон – это специфическая структура в нашем организме, которая отвечает за передачу внутри него любой информации, в быту называемая нервной клеткой.
Нейроны работают при помощи электрических сигналов и способствуют обработке мозгом поступающей информации для дальнейшей координации производимых телом действий.
Эти клетки являются составляющей частью нервной системы человека, предназначение которой состоит в том, чтобы собрать все сигналы, поступающие из вне или от собственного организма и принять решение о необходимости того или иного действия. Именно нейроны помогают справиться с такой задачей.
Каждый из нейронов имеет связь с огромным количеством таких же клеток, создаётся своеобразная «паутина», которая называется нейронной сетью. Посредством данной связи в организме передаются электрические и химические импульсы, приводящие всю нервную систему в состояние покоя либо, наоборот, возбуждения.
К примеру, человек столкнулся с неким значимым событием. Возникает электрохимический толчок (импульс) нейронов, приводящий к возбуждению неровной системы. У человека начинает чаще биться сердце, потеют руки или возникают другие физиологические реакции.
Мы рождаемся с заданным количеством нейронов, но связи между ними еще не сформированы. Нейронная сеть строится постепенно в результате поступающих из вне импульсов. Новые толчки формируют новые нейронные пути, именно по ним в течение жизни побежит аналогичная информация. Мозг воспринимает индивидуальный опыт каждого человека и реагирует на него. К примеру, ребенок, схватился за горячий утюг и отдернул руку. Так у него появилась новая нейронная связь.
Стабильная нейронная сеть выстраивается у ребенка уже к двум годам. Удивительно, но уже с этого возраста те клетки, которые не используются, начинают ослабевать. Но это никак не мешает развитию интеллекта. Наоборот, ребенок познает мир через уже устоявшиеся нейронные связи, а не анализирует бесцельно все вокруг.
Даже у такого малыша есть практический опыт, позволяющий отсекать ненужные действия и стремиться к полезным. Поэтому, например, так сложно отучить ребенка от груди — у него сформировалась крепкая нейронная связь между приложением к материнскому молоку и удовольствию, безопасности, спокойствию.
Познание нового опыта на протяжении всей жизни приводит к отмиранию ненужных нейронных связей и формированию новых и полезных. Этот процесс оптимизирует головной мозг наиболее эффективным для нас образом. Например, люди, проживающие в жарких странах, учатся жить в определенном климате, а северянам нужен совсем другой опыт для выживания.
Составляющие
Глиоцитов в системе в 5-10 раз больше, чем нервных клеток. Они выполняют разные функции: опорную, защитную, трофическую, стромальную, выделительную, всасывающую. Кроме этого, глиоциты обладают способностью к пролиферации. Эпендимоциты отличаются призматической формой. Они составляют первый слой, выстилают мозговые полости и центральный спинномозговой отдел. Клетки участвуют в продуцировании спинномозговой жидкости и обладают способностью всасывать ее. Базальная часть эпендимоцитов имеет коническую усеченную форму. Она переходит в длинный тонкий отросток, пронизывающий мозговое вещество. На его поверхности он формирует глиальную отграничительную мембрану. Астроциты представлены многоотросчатыми клетками. Они бывают:
- Протоплазматическими. Они расположены в сером мозговом веществе. Эти элементы отличаются наличием многочисленных коротких разветвлений, широких окончаний. Часть последних окружает кровеносные капиллярные сосуды, участвует в формировании гематоэнцефалического барьера. Другие отростки направлены к нейронным телам и по ним осуществляется перенос питательных веществ из крови. Они также обеспечивают защиту и изолируют синапсы.
- Волокнистыми (фиброзными). Эти клетки находятся в белом веществе. Их окончания слабоветвящиеся, длинные и тонкие. На концах у них присутствуют разветвления и формируются отграничительные мембраны.
Олиодендроциты представляют собой мелкие элементы с отходящими короткими хвостами, расположенными вокруг нейронов и их окончаний. Они формируют глиальную оболочку. Посредством нее передаются импульсы. На периферии эти клетки называют мантийными (леммоцитами). Микроглия является частью макрофагальной системы. Она представлена в виде мелких подвижных клеток с малоразветвленными короткими отростками. В элементах содержится светлое ядро. Они могут формироваться из кровяных моноцитов. Микроглия восстанавливает строение нервной клетки, подвергшейся повреждениям.
Нейроглия
Невроны не способны делиться, потому и появилось утверждение, что нервные клетки не восстанавливаются. Именно поэтому их следует оберегать с особой тщательностью. С основной функцией «няни» справляется нейроглия. Она находится между нервными волокнами.
Эти мелкие клетки отделяют нейроны друг от друга, удерживают их на своем месте. У них длинный список функций. Благодаря нейроглии сохраняется постоянная система установленных связей, обеспечивается расположение, питание и восстановление нейронов, выделяются отдельные медиаторы, фагоцитируется генетически чужое.
Таким образом, нейроглия выполняет ряд функций:
- опорную;
- разграничительную;
- регенераторную;
- трофическую;
- секреторную;
- защитную и т.д.
В ЦНС нейроны составляют серое вещество, а за границами мозга они скапливаются в специальные соединения, узлы – ганглии. Дендриты и аксоны создают белое вещество. На периферии именно благодаря этим отросткам строятся волокна, из которых и состоят нервы.
Строение нейрона
Плазматическая
мембранаокружает нервную клетку.
Она состоит из белковых и липидных
компонентов, находящихся в
жидкокристаллическом состоянии(модель
мозаичной мембраны): двуслойность
мембраны создается липидами, образующими
матрикс, в котрый частично или полностью
погружены белковые комплексы.
Плазматическая мембрана регулирует
обмен веществ между клеткой и ее средой,
а также служит структурной основой
электрической активности.
Ядроотделено
от цитоплазмы двумя мембранами, одна
из которых примыкает к ядру, а другая к
цитоплазме. Обе они местами сходятся,
образуя поры в ядерной оболочке, служащие
для транспорта веществ между ядром и
цитоплазмой. Ядро контролирует
дифференцировку нейрона в его конечную
форму, которая может быть очень сложной
и определяет характер межклеточных
связей. В ядре нейрона обычно находится
ядрышко.
Рис. 1. Строение
нейрона (с изменениями по ):
1 — тело (сома), 2 —
дендрит, 3 — аксон, 4 — аксонная терминаль,
5 — ядро,
6 — ядрышко, 7 —
плазматическая мембрана, 8 — синапс, 9 —
рибосомы,
10 — шероховатый
(гранулярный) эндоплазматический
ретикулум,
11 — субстанция
Ниссля, 12 — митохондрии, 13 — агранулярный
эндоплазматический ретикулум, 14 —
микротрубочки и нейрофиламенты,
15
— миелиновая оболочка, образованная
шванновской клеткой
Рибосомы производят
элементы молекулярного аппарата для
большей части клеточных функций:
ферменты, белки-переносчики, рецепторы,
трансдукторы, сократительные и опорные
элементы, белки мембран. Часть рибосом
находится в цитоплазме в свободном
состоянии, другая часть прикрепляется
к обширной внутриклеточной мембранной
системе, являющейся продолжением
оболочки ядра и расходящейся по всей
соме в форме мембран, каналов, цистерн
и пузырьков (шероховатый эндоплазматический
ретикулум). В нейронах близ ядра
образуется характерное скопление
шероховатого эндоплазматического
ретикулума (субстанция Ниссля),
служащее местом интенсивного синтеза
белка.
Аппарат Гольджи
— система уплощенных мешочков, или
цистерн — имеет внутреннюю, формирующую,
сторону и наружную, выделяющую. От
последней отпочковываются пузырьки,
образующие секреторные гранулы. Функция
аппарата Гольджи в клетках состоит в
хранении, концентрировании и упаковке
секреторных белков. В нейронах он
представлен более мелкими скоплениями
цистерн и его функция менее ясна.
Лизосомы —заключенные в мембрану структуры,не
имеющие постоянной формы, — образуют
внутреннюю пищеварительную систему. У
взрослых особей в нейронах образуются
и накапливаютсялипофусциновые
гранулы, происходящие из лизосом. С
ними связывают процессы старения, а
также некоторые болезни.
Митохондрии
имеют гладкую наружную и складчатую
внутреннюю мембраны и являются местом
синтезааденозинтрифосфорной кислоты
(АТФ)— основного источника энергии
для клеточных процессов — в цикле
окисления глюкозы (у позвоночных).
Большинство нервных клеток лишено
способности запасать гликоген (полимер
глюкозы), что усиливает их зависимость
в отношении энергии от содержания в
крови кислорода и глюкозы.
Фибриллярные
структуры: микротрубочки(диаметр
20-30 нм),нейрофиламенты(10 нм) имикрофиламенты (5 нм). Микротрубочки
и нейрофиламенты участвуют во
внутриклеточном транспорте различных
веществ между телом клетки и отходящими
отростками. Микрофиламенты изобилуют
в растущих нервных отростках и,
по-видимому, управляют движениями
мембраны и текучестью подлежащей
цитоплазмы.
Синапс —функциональное соединение нейронов,
посредством которого происходит передача
электрических сигналов между клетками.Щелевой контактобеспечивает
электрический механизм связи между
нейронами(электрический синапс).
Рис. 2. Строение
синаптических контактов:
а
— щелевого контакта, б — химического
синапса (с изменениями по ):
1 — коннексон,
состоящий из 6 субъединиц, 2 — внеклеточное
пространство,
3 — синаптическая
везикула, 4 — пресинаптическая мембрана,
5 — синаптическая
щель, 6 —
постсинаптическая мембрана,7 — митохондрия,
8 — микротрубочка,
9
— нейрофиламенты
Химический синапсотличается ориентацией мембран в
направлении от нейрона к нейрону, что
проявляется в неодинаковой степени
уплотненности двух смежных мембран и
наличием группы небольших везикулвблизи синаптической щели. Такая
структура обеспечивает передачу сигнала
путем экзоцитоза медиатораиз
везикул.
Синапсы также
классифицируются в зависимости от того,
чем они образованы: аксо-соматические,
аксо-дендритные, аксо-аксонные и
дендро-дендритные.
Дендриты
Дендриты – древовидные расширения в начале нейронов, которые служат для увеличения площади поверхности клетки. У многих нейронов их большое количество (тем не менее, встречаются и такие, у которых есть только один дендрит). Эти крошечные выступы получают информацию от других нейронов и передают её в виде импульсов к телу нейрона (соме). Место контакта нервных клеток, через которое передаются импульсы – химическим или электрическим путём, – называется синапсом.
Характеристики дендритов:
- Большинство нейронов имеют много дендритов
- Тем не менее, некоторые нейроны могут иметь только один дендрит
- Короткие и сильно разветвленные
- Участвует в передаче информации в тело клетки
Сома
Сомой, или телом нейрона, называется место, где сигналы от дендритов аккумулируются и передаются дальше. Сома и ядро не играют активной роли в передаче нервных сигналов. Эти два образования служат скорее для поддержания жизнедеятельности нервной клетки и сохранения её работоспособности. Этой же цели служат митохондрии, которые обеспечивают клетки энергией, и аппарат Гольджи, который выводит продукты жизнедеятельности клеток за пределы клеточной мембраны.
Аксонный холмик
Аксонный холмик – участок сомы, от которого отходит аксон, – контролирует передачу нейроном импульсов. Именно тогда, когда общий уровень сигналов превышает пороговое значение холмика, он посылает импульс (известный, как потенциал действия) далее по аксону, к другой нервной клетке.
Аксон
Аксон – это удлиненный отросток нейрона, который отвечает за передачу сигнала от одной клетки к другой. Чем больше аксон, тем быстрее он передаёт информацию. Некоторые аксоны покрыты специальным веществом (миелином), который выступает в качестве изолятора. Аксоны, покрытые миелиновой оболочкой, способны передавать информацию намного быстрее.
Характеристики Аксона:
- У большинства нейронов имеется только один аксон
- Участвует в передаче информации от тела клетки
- Может или не может иметь миелиновую оболочку
Терминальные ветви
На конце Аксона расположены терминальные ветви – образования, которые отвечают за передачу сигналов к другим нейронам. В конце терминальных ветвей как раз и находятся синапсы. В них для передачи сигнала к другим нервным клеткам служат особые биологически активные химические вещества – нейромедиаторы.
Теги: мозг, нейрон, нервная система, строение
Есть что сказать? Оставть комментарий!:
Вывод
Физиология человека поражает своей слаженностью. Мозг стал величайшим творением эволюции. Если представлять организм в форме слаженной системы, то нейроны – это провода, по которым проходит сигнал от головного мозга и обратно. Их число огромно, они создают уникальную сеть в нашем организме. Ежесекундно по ней проходят тысячи сигналов. Это потрясающая система, которая позволяет не только функционировать организму, но и контактировать с окружающим миром.
Без невронов тело просто не сможет существовать, потому следует постоянно заботиться о состоянии своей нервной системы
Важно правильно питаться, избегать переутомления, стрессов, вовремя лечить заболевания
Что такое дендрит — функции и морфология
Дендриты (dendrite) — многочисленные тонкие трубчатые или округлые выпячивания клеточного тела (перикариона) нервной клетки. Сам термин говорит о чрезвычайной разветвленности этих участков нейронов (от греч. δένδρον (dendron) — дерево).
В поверхностной структуре нейроцитов могут насчитываться от нуля до множества дендритов. Аксон чаще всего единственный. Поверхность дендритов не имеет миелиновой оболочки в отличие от аксонных отростков.
Цитоплазма содержит те же клеточные компоненты, что и само тело нервной клетки:
- эндоплазматический гранулярный ретикулум;
- скопления рибосом — полисомы (белоксинтезирующие органеллы);
- митохондрии (энергетические “станции” клетки, которые, используя глюкозу и кислород, синтезируют необходимые высокоэнергетические молекулы);
- аппарат Гольджи (отвечает за доставку внутренних секретов к внешнему слою клетки);
- нейротубулы (микротрубочки) и нейрофиламенты — главные компоненты цитоплазмы, тонкие опорные структуры, которые обеспечивают сохранение определенной формы.
Строение дендритных окончаний напрямую связано с их физиологическими функциями — получением информации от аксонов, дендритов, перикариона соседних нервных клеток посредством многочисленных межнейронных контактов на основе избирательной чувствительности к определенным сигналам.
Строение нейрона: аксоны и дендриты
Основные статьи: Дендрит,Аксон
Схема строения нейрона
Аксон— обычно длинный отросток нейрона, приспособленный для проведения возбуждения и информации от тела нейрона или от нейрона к исполнительному органу.Дендриты— как правило, короткие и сильно разветвлённые отростки нейрона, служащие главным местом образования влияющих на нейрон возбуждающих и тормозных синапсов (разные нейроны имеют различное соотношение длины аксона и дендритов), и которые передают возбуждение к телу нейрона. Нейрон может иметь несколько дендритов и обычно только один аксон. Один нейрон может иметь связи со многими (до 20-и тысяч) другими нейронами.
Дендриты делятся дихотомически, аксоны же дают коллатерали. В узлах ветвления обычно сосредоточены митохондрии.
Дендриты не имеют миелиновойоболочки, аксоны же могут её иметь. Местом генерации возбуждения у большинства нейронов является аксонный холмик — образование в месте отхождения аксона от тела. У всех нейронов эта зона называется триггерной.
Синапс
Основная статья: Синапс
Си́напс(греч.σύναψις, отσυνάπτειν— обнимать, обхватывать, пожимать руку) — место контакта между двумянейронамиили между нейроном и получающей сигналэффекторнойклеткой. Служит для передачинервного импульсамежду двумя клетками, причём в ходе синаптической передачи амплитуда и частота сигнала могут регулироваться.
Термин был введён в 1897 г. английским физиологом Чарльзом Шеррингтоном.
- Общая информация
- Аксоны нейрона
- Дендриты нейрона
- Тело
Важнейший элемент в нервной системе – нейронная клетка, или простой нейрон. Это специфическая единица нервной ткани, задействованная в передаче и первичной обработке информации, а так же, являющаяся главным структурным образованием в ЦНС. Как правило, клетки имеют универсальные принципы строения и включают в себя помимо тела, еще аксоны нейронов и дендриты.
Структура и типы
Внешняя поверхность дендритов покрыта тонкими выпячиваниями в виде мельчайших шипиков размером 2-3 мкм. Количество таких формирований на поверхности может варьировать от нуля до десятка тысяч. Формы самих микрошипиков многообразны, но самой часто встречаемой формой считается грибовидный шипик.
Количество шипиков на поверхности и их размеры могут быстро меняться. От этого зависит реакция нейрона на сигналы от других клеток.
На образование выпячиваний-шипиков, их форму и развитие влияют внутренние и внешние обстоятельства: возраст организма, активность синаптических связей, информационная загруженность нейронных цепей, образ жизни организма и многое другое.
Целостность и стабильность структуры шипиков могут подвергаться влиянию негативных факторов:
- патофизиологические факторы (например, нейродегенеративные процессы в нервной ткани, опосредованные тяжелой наследственностью);
- токсикологические агенты (при употреблении наркотиков, алкоголя, ядов различной природы).
Под воздействием этих негативных факторов во внутреннем строении микрошипиков происходят серьезные деструктивные превращения: разрушение цистерн шипикового аппарата, накопление мультивезикулярных тел (пропорционально степени разрушительных влияний).
После серии испытаний, проведенной с подопытными мышами, было доказано, что не столько сами дендриты, сколько дендритные шипики являются элементарными единицами хранения памяти и формирования синаптической пластичности.
Ветвление
Дендритные структуры образуются вследствие древовидного разветвления отростков нейронов. Этот процесс называется арборизацией. Количество точек (или узлов) ветвления обуславливает степень разветвленности и сложность окончаний дендрита. В цитоплазме узлов ветвления обычно сконцентрированы митохондрии, так как ветвление – энергозатратный физиологический процесс.
Структура дендритного дерева обуславливает физическую восприимчивую площадь, то есть количество входных импульсов, которые суммарно сможет принять и провести нейроцит.
Одно из главных предназначений дендритов состоит в наращивании контактной поверхности для синапсов (увеличении рецепторного поля).
Это позволяет клетке принимать и перенаправлять больший объем информации, которая поступает к телу нейрона. Степень разветвленности определяет то, как нейрон в итоге суммирует электрические сигналы, полученные от других клеток: чем больше и сложнее ветвление, тем более плотно нейроны прилегают друг к другу.
За счет разветвленного строения поверхность рецепторной мембраны нервной клетки увеличивается в 1000 и более раз.
Диаметр и длина
Дендритные окончания имеют разные размеры, но всегда характеризуются постепенным уменьшением диаметра претерминальных веточек. Длина обычно от нескольких мкм до 1 мм. Но, например, у некоторых чувствительных нейронов спинномозговых ганглиев дендриты очень длинные – до метра и более.
Строение дендрита
На основании изучения микроскопических препаратов нервных клеток установили, что большинство отростков имеют цилиндрическую форму. Их диаметр в среднем составляет 0,9 мкм. Длина дендритов варьирует в широких пределах. Например, звездчатые нейроны серого вещества коры головного мозга имеют короткие (не более 200 мкм) ветви дендритного дерева, тогда как отростки двигательного нейрона, входящего в передние рога спинного мозга, составляют порядка 2 мм.
Специальные образования — шипики, формирующиеся на ветвях нейроцитов, приводят к появлению большого числа синапсов – щелевидных мест контакта с аксоном, дендритом или сомой другого нейрона. Синапсы могут располагаться на теле дендрита и называются стволовыми или же непосредственно на его шипиках. Как мы уже знаем, дендриты – это разветвленные отростки нейроцитов, способные принимать возбуждение. Передача же биопотенциалов происходит в них с помощью молекул химических соединений — медиаторов, например, ГАМК или ацетилхолина. В мембране, покрывающей дендрит, обнаружены ионные каналы, избирательно пропускающие катионы кальция, натрия и калия, участвующие в прохождении нервных импульсов через нейрон.
Проведение нервного импульса
Рецепторная мембрана поверхности дендритов (как и тела нервной клетки) покрыта многочисленными синаптическими бляшками, которые передают возбуждение на восприимчивый участок поверхностной мембраны нейрона, где генерируется биоэлектрический потенциал.
Информация, закодированная в виде электрических импульсов, передается на электровозбудимую проводящую мембрану аксона. Таким образом формируются нейронные сети организма.
На что влияет разветвленность нервных отростков
Тело нейрона является универсальным передающим и одновременно принимающим биологическим объектом. Объем (прежде всего поступающей информации) прямо пропорционален количеству входящих нервных импульсов. Они определяются по степени ветвления дендритного дерева. Поэтому дендриты – это структуры нейроцита, играющие интегративную функцию.
Более того, отростки расширяют площадь контакта нервных клеток между собой. Дополнительное же образование синапсов в разы повышает эффективность работы всех отделов, как головного и спинного мозга, так и нервной системы в целом.
Дендритная кристаллизация
В случае увеличения температуры в сторону жидкой фазы, то есть при положительном градиенте температуры , образуются относительно плоские грани кристаллов. Пока кристаллы окружены жидкой фазой, они растут свободно и имеют почти правильную геометрическую форму, которая определяется анизотропией скорости роста. В результате взаимного столкновения граней соседних кристаллов на завершающей стадии кристаллизации их правильная форма искажается. Так образуются кристаллиты произвольной формы.
В металлах и сплавах вследствие интенсивного выделения скрытой теплоты кристаллизации на границе кристалла и сильно переохлажденного расплава возникает отрицательный градиент температуры, который меняет механизм роста кристаллов. Чем дальше от границы, тем больше является переохлаждение расплава. Поэтому любая выпуклость на поверхности зародыша попадает в зону большего переохлаждения и растет вглубь расплава быстрее, чем плоские участки поверхности, образуя вытянутую первичную ось кристалла.
Направление роста осей кристалла совпадает с направлением оси пирамиды, которую образуют плоскости густого упаковки атомов. Поэтому в кристаллах с кубической или тетрагональной решеткой оси кристаллитов перпендикулярны между собой, а с гексагональной — размещены под углом 60 °. Наконец, когда температуры осей кристалла и расплава между ними выравниваются, начинается медленнее кристаллизация в межосевому пространстве. Так из зародышей вырастают древовидные кристаллиты — дендриты (с греч. Δένδρον — дерево). Механизм такого роста называют дендритным.
Дендриты растут до момента столкновения с соседями на завершающей стадии кристаллизации, приобретая при этом нерегулярной формы и определенных размеров. Размер дендритных кристаллитов является важным фактором, определяющим свойства литых сплавов. Мелкодисперсная структура обеспечивает лучшие механические и технологические свойства по сравнению с грубодисперсной. В практике литейного производства для большинства отливок стремятся обеспечить мелкозернистую структуру, реализующих преимущественно модифицирования или из-за изменения температуры расплава или скорости охлаждения при кристаллизации.
( 1 оценка, среднее 5 из 5 )
НЕРВНАЯ ТКАНЬ
Собственно нервную ткань составляют нервные клетки (нейроны) с их отростками и клетки глии. Сосуды и оболочки мозга имеют мезодермальное происхождение. Неврология изучает данные структуры организма.
2.5.1. Историческая справка
Успехи оптики, приведшие к созданию светового микроскопа, и достижения химии, позволившие получить анилиновые и другие красители, привели к возникновению и развитию гистологии. Это позволило во второй половине XVIII в. обнаружить в мозге нервные волокна (Монро А., 1787; Фонтан Ф., 1781; Рейли И., 1796); в 30-х годах XIX в. были описаны и нервные клетки (ЭрснбергХ., в 1833; Пуркинье Я., Шванн Т., в 1838). В 1865 г. О. ДеИтере (1834-1863) и в 1867 г. А.Я. Кожевников доказали, что нервные волокна являются отростками нервных клеток. О. Дейтерс отметил, что один из отростков обычно длинный, остальные — короткие. Эти отростки получили название соответственно аксон (нейрит) и дендриты. В 1887 г. испанский нейроморфолог С. Рамон-и-Кахаль (S. Ramon у Cajal, 1852—1934) сформулировал положения:
- 1) концевые разветвления длинного отростка нервной клетки — аксона свободно оканчиваются в сером веществе мозга и не образуют сетей;
- 2) между отростками нервных клеток существуют контакты;
- 3) в местах контакта волокон или волокна и тела клетки передача нервного импульса происходит по принципу электрических проводников, возможно через индукцию1.
В 1891 г. С. Рамон-и-Кахаль установил закон динамической поляризации нервной клетки: нервный импульс перемещается по клетке и ее отросткам всегда в одном направлении: дендрит —> тело клетки —> аксон. В том же году немецкий исследователь В. Вальдейер (WaldeyerW., 1836—1921) назвал нервную клетку со всеми ее отростками «нейрон» и, опираясь на добытые к тому временем данные о структуре нервной ткани, окончательно сформулировал нейронную теорию ее строения. К тому времени эта теория далеко не всем исследователям представлялась очевидной. Среди ее противников были, в частности, такие видные неврологи, как Ю. Герлах и К. Гольджи — сторонники синцитиального строения мозга.
Уже при макроскопическом осмотре мозга на разрезе выявляется неоднородность составляющей его ткани. В головном и спинном мозге выделяются участки серого и белого вещества. Серое вещество — места скопления тел нервных клеток и протоплазматической астроцитарной глии. Белое вещество состоит в основном из нервных волокон и окружающих их глиальных клеток — главным образом олигодендроцитов и волокнистых астроцитов, при этом белый цвет белого вещества мозга обусловлен цветом миелиновой оболочкой нервных волокон, формирующих проводящие проекционные пути, ко-миссуральные и ассоциативные связи.
2.5.2. Нервная клетка
Нервная клетка (нейрон), признающаяся основной структурной и функциональной единицей нервной системы (рис. 2.3), принципиально отличается от клеток, составляющих другие органы и ткани.
Но функциональная самостоятельность нейрона условна. Так, например, гибель периферических двигательных нервных клеток, расположенных в передних рогах спинного мозга, может лишить смысла активность сопряженных с ними корковых моторных нейронов, так как прерывается путь между двигательными клетками коры и исполнительным органом — в данном случае с определенными поперечнополосатыми мышцами (ситуация, возникающая, к примеру, при эпидемическом полиомиелите). Особенности функции нейронов сказываются на их форме (рис. 2.4) и составе содержащихся в них цито-плазматических органелл.
Каждая нервная клетка (нейрон) имеет тело (перикарион) и отростки. Один из них — маловетвящийся и обычно самый длинный — аксон (нейрит); другие, короткие, имеющие много ответвлений, — дендриты, в типичных случаях характеризующиеся древовидным строением. Форма и размеры нейронов вариабельны. По форме тел их делят на звездчатые, корзинчатые, пирамидные и пр. Размеры тел нейронов варьируют от 4 до 150 мкм в диаметре. Нейроны с большим количеством отростков называют мультиполярными, их большинство. Кроме того, существуют биполярные нейроны с аксоном и одним дендритом, находящиеся главным образом в составе обонятельной, зрительной и слуховой систем, и так называемые псевдоуниполярные клетки, расположенные в спинальных ганглиях и их аналогах, находящихся в составе черепных нервов. Псевдоуниполярные клетки также имеют по два отростка — аксон и дендрит1, но проксимальные части этих отростков прочно прилежат друг к другу, что на препаратах, импрегнированных серебром, создает впечатление униполярности клеток. Принято считать, что только в головном мозге человека насчитывается до 10 млрд нейронов. Возможна классификация нервных клеток и по длине аксонов [клетки с длинными аксонами, выходящими за пределы данного скопления клеток (ядра), называют клетками Гольджи I, клетки с короткими аксонами — клетки Гольджи II). Классифицируются нейроны также и по их функции: сенсорные, моторные, ассоциативные. Особенно значимой для понимания многих клинических проблем является, пожалуй, классификация нейронов по характеру вырабатываемого в них нейромедиатора (нейротранс-миттера). По этому принципу нейроны дифференцируются на холинсргичес-кие, серотонинергические, адреналинергические, ГАМКергические, допами-нергические и т.п.
Тело клетки и ее отростки покрывает непрерывная сдвоенная мембрана (невролемма), представляющая собой липопротеиновый комплекс и выполняющая разграничительную и транспортные функции. Через нее осуществляется пассивный транспорт воды и некоторых низкомолекулярных веществ, а также перенос ионов и органических молекул против градиента концентрации с затратой энергии, возникающей в основном при расщеплении молекул аденозинтрифосфата (АТФ). Последнее свойство мембраны нервной клетки обеспечивает поддержание в ней постоянного мембранного потенциала покоя, а также возникновение возбуждающего или тормозного постсинаптического потенциалов (ВПСП или ТПСП), определяющих формирование нервного импульса в связи с резким изменением проницаемости клеточных мембран для содержащих биоэлектрический заряд ионов.
Нейрон (рис. 2.3) не только обеспечивает проведение импульсов, но и синтезирует белки, липиды, углеводы, а также нейромедиаторы (нейротрансмиттеры). Некоторые нейроны к тому же продуцируют гормоны (вазопрессин, окситоцин, антидиуретический гормон, рилизинг-факторы). В теле нейрона находится цитоплазма и ядро с расположенным в нем ядрышком, а также базофильные органоиды (органеллы): пластинчатый комплекс (комплекс Гольджи), митохондрии, лизосомы, имеющиеся и в соматических клетках, и, кроме того, специфическое для нервных клеток базофильное вещество Ниссля, нейрофибриллы и нейротрубочки. Включениями в цитоплазме нервных клеток могут быть гранулы гликогена, каротиноидов, пигмента и пр.
Ядро нервной клетки относительно большое, слабо окрашивается, содержит много дезоксирибонуклеиновой кислоты (ДНК); его окружает двухслойная мембрана с множеством пор, через которые совершается обмен между цитоплазмой и заполняющей ядро нуклеоплазмой. В ядре происходит синтез рибонуклеиновой кислоты (РНК), которая проникает из него в плазму и участвует в формировании органелл клетки. Заключенное в ядре ядрышко представляет собой лишенное мембраны меняющееся по форме, размеру и химическому составу образование, состоящее из РНК, белков, липидов и находящегося внутри слоя ДНК. Изменчивость ядрышка отражает его высокую физиологическую активность.
Пластинчатый комплекс Гольджи (липохондрии), как и ядрышко, в процессе жизнедеятельности клетки подвергается циклическим изменениям. Он состоит из плотно упакованных двухслойных мембран и гранул, содержит липиды, фос-фатиды, мукополисахариды и участвует в синтезе углеводных полимеров, гормонов.
Рис. 2.3. Нейрон, его отростки: 1 — дендриты, 2 — аксон, 3 — разветвления аксона.
Рис. 2.4. Некоторые виды нейронов (по Бейли).
I — периферический чувствительный нейрон; 2 — короткоаксонный нейрон типа Голь-джи II; 3 — периферический мотонейрон; 4 — обонятельный нейрон; 5 — клетка зернистого слоя мозжечка; 6 — нейрон симпатического узла; 7 — клетка Пуркинье; 8 — пирамидная клетка Беца. Стрелки показывают направление перемещающихся по клетке нервных импульсов.
Митохондрии имеют палочковидную форму, рассеяны по всей цитоплазме нейрона. Особенно много их в наиболее активных частях нейрона: в его теле и окончаниях ветвлений аксона (в пресинаптических пуговках). Митохондрии содержат дыхательные ферменты и играют важную роль в осуществлении дыхания клетки, обеспечивая процесс окислительного фосфорилирования (окисление углеводов и жиров) и участия в гликолизе. Основная функция митохондрий связана с образованием богатой энергией АТФ.
Лизосомы имеют вид вакуолей, содержат гидролитические ферменты (протеиназы, нуклеазы, глюкозидазы, фосфатазы, липазы), расщепляющие различные биополимеры. Основная функция лизосом — расщепление биологических макромолекул внутриклеточного и внеклеточного происхождения на более простые микромолекулы, которые впоследствии могут быть утилизированы в результате происходящего в нейроне биосинтеза более сложных соединений.
Рис. 2.5. Компоненты периферического мотонейрона [По Дж. Шаде и Д. Форду]. I — ядро; 2 — ядрышко; 3 — сателлит ядрышка; 4 — дендрит; 5 — эндоплазматичес-кая сеть с гранулами РНК (вещество Ниссля); 6 — синапс; 7 — ножка астроцита; 8 — гранулы ДНК; 9 — липофусцин; 10 — аппарат Гольджи; 11 — митохондрия; 12 — аксонный холмик; 13 — нейрофибриллы; 14 — аксон; 15 — миелиновая оболочка; 16 — перехват Ранвье; 17 — ядро леммоцита; 18 — леммоцит в области нервно-мышечного синапса; 19 — ядро мышечной клетки; 20 — нервно-мышечное соединение; 21 — мышца.
Базофильное вещество Ниссля (тигроид) составляют базофильные трубчатые структуры и гранулы из РНК, соединенной с белком (РНК-Б). Глыбки вещества Ниссля рассеяны по всей цитоплазме нейрона и участвуют в формировании ее эндоплазматической сети. Измельчаясь, они проникают в его дендриты, однако в аксоне и в той части тела клетки, от которой начинается аксон, базофильное вещество отсутствует. Признано, что оно осуществляет синтез белков, происходящий под контролем генетического аппарата ядра. Количество базофильного вещества в нервной клетке изменчиво и зависит от ее функционального состояния.
Среди включений в нервной клетке особое значение имеет нейромеланин, скопление которого наблюдается в черном веществе (substantia nigra) среднего мозга. Нейромеланин — необходимое звено в процессе образования катехола-минов.
2.5.3. Нервные волокна
Нервное волокно — в большинстве случаев аксон нервной клетки, состоит из осевого цилиндра, покрытого миелиновой оболочкой. Толщина аксона составляет от 0,3 до 20 мкм и зависит главным образом от толщины миелиновой оболочки, которая образуется за счет многократного обертывания фрагментов осевого цилиндра «избыточной» оболочкой прилежащих к нему глиальных клеток, в центральной нервной системе — олигодендроцитов, в периферической нервной системе — шванновских клеток (леммоциты). Образуемая таким образом миелиновая оболочка состоит из слоев, спиралеобразно окружающих осевой цилиндр аксона, число их может быть 100 и более (рис. 2.6). В состав миелиновой оболочки входят холестерин, фосфолипиды, некоторые цереброзиды и жирные кислоты, а также белковые вещества. Между фрагментами миелиновой оболочки, каждый из которых сформирован за счет оболочки ближайшей глиальной клетки, образуются просветы — перехваты Ранвье (см. рис. 2.5). Скорость проведения по волокну нервного импульса прямо пропорциональна толщине его миелиновой оболочки и варьирует от 0,6 до 20 м/с.
Американские физиологи Г. Гассер (Gasser H.S., 1888—1963) и Дж. Эрлан-гер (Erlanger G., 1874—1965) в 1924 г. разделили аксоны на группы А, В и С. Большинство миелиновых волокон относятся к группе А. Группу В составляют белые соединительные ветви, относящиеся к симпатической нервной системе. В группу С входят наиболее тонкие нервные волокна, которые обычно называют безмиелиновыми (безмякотными), однако и они, как правило, имеют хотя бы очень тонкую, однослойную миелиновую оболочку. Волокна группы А делятся по толщине на А-альфа, А-бета и А-гамма. А-альфа наиболее толстые из них1.
Зная толщину миелинового волокна, можно определить скорость проведения по нему нервного импульса. Если волокно толще 1 мкм, можно пользоваться формулой: V (скорость проведения нервного импульса) = диаметр волокна (в мкм), умноженный на 6. Полученное произведение обозначается в м/с.
1 Г. Гассер и Дж. Эрлангер в 1944 г. удостоены Нобелевской премии.
Рис. 2.6. Поперечные срезы нервного волокна на разных этапах процесса его миелинизации (аксон и леммоцит).
а, б, в — стадии формирования мие-линовой оболочки.
Для определения скорости проведения импульсов по волокнам С (диаметр меньше 1 мкм) может быть применена другая формула: V = диаметр волокна (в мкм), умноженный на 2. Полученное произведение обозначается в м/с. Д. Ллойд (D. Lloyd) классифицирует аксоны по их диаметру: 1-я группа — 12—20 мкм; 2-я группа — 6—12 мкм; 3-я группа — 1—6 мкм; 4-я группа — меньше 1 мкм.
2.5.4. Аксоток
Для нейрона характерна исключительно высокая активность метаболических процессов. Биосинтез большинства макромолекул клетки осуществляется в ее теле. Отсюда они распространяются по аксону посредством ортоградного аксонального тока. Различают быстрый ортоградный аксональный ток (аксо-нальный транспорт), или быстрый компонент аксотока, благодаря которому по аксону транспортируются молекулы белка, гликопротеиды и фосфолипиды, некоторые ферменты, необходимые для поддержания текущего метаболизма, со скоростью 200-400 мм/суг. Медленный аксональный ток (аксональный транспорт) обеспечивает перенос из тела клетки к периферии аксона материала для восстановления клеточного каркаса (микротубулярно-нейрофиламен-тарной сети) со скоростью 0,3—1,0 мм/сут и актиносодержащих микрофила-ментов и аксоплазматического матрикса со скоростью 2—4 мм/сут.
Большинство переносимых по аксону молекул включается в метаболизм в пределах нейрона; они обеспечивают восстановление его энергетических затрат, рост и регенерацию аксонов. Часть из них может переходить в постсина-птические структуры, а также в прилежащие глиальные клетки, участвуя таким образом, в частности, и в формировании миелиновой оболочки.
Рис. 2.7. Синаптические процессы в возбужденном синапсе [По Л. Шельцыну, 1980). А — ацетат; X — холин; АХ — ацетилхолин; Хэ — холинэстераза; ВПСП — возбудительный постсинаптический потенциал.
Продукты происходящих в аксоне процессов метаболизма посредством ретроградного аксонального тока со скоростью 150—300 мм/сут перемещаются в тело клетки, где подвергаются дальнейшему разрушению ферментами лизосом до составных элементов, используемых при формировании вновь синтезируемых в теле нейрона макромолекул. Таким образом, ретроградный аксональный ток обеспечивает возможность осуществления в теле клетки процессов вторичной утилизации микромолекул.
2.5.5. Синаптическая передача
Место, где окончание аксона сближается с дендритом или телом следующей в нейронной цепи нервной клетки, по предложению Ч. Шеррингтона (Sherrington Ch., 1857—1952), называется синапсом (от греч. sinapto — застежка, соединение). Конечные ветвления аксона — телодендрии заканчиваются утолщением (пресинаптическая пуговка), в котором содержатся митохондрии и пузырьки с квантами медиатора (рис. 2.7). Участок невролеммы пресинаптической пуговки, особенно близко расположенный к структурам следующего нейрона, называется пресинаптической мембраной. Находящийся в непосредственной близости от него участок невролеммы последующего нейрона называется постсинаптической мембраной. Между пресинаптической и постсинаптической мембранами расположена узкая синаптическая щель (ширина ее приблизительно 200 А, или 0,02 мкм).
Когда нервный импульс доходит до пресинаптической пуговки, из расположенных в ней синаптических пузырьков в синаптическую щель выделяется квант нейромедиатора, который достигает постсинаптической мембраны и меняет ее проницаемость для находящихся вокруг положительно и отрицательно заряженных ионов, вызывая, таким образом, в расположенном по другую сторону синаптической шели нейроне возникновение возбуждающего или тормозного постсинаптического потенциала. В результате нейромедиатор обеспечивает химическую передачу нервного импульса через синаптическую шель и, по сути, служит посредником для передачи нервного импульса от передающего его нейрона к воспринимающему.
Выделившиеся в синаптическую щель кванты медиатора отчасти возвращаются через пресинаптическую мембрану назад (обратный захват) в пресинап-тическую пуговку, отчасти медиатор разрушается в синаптической щели под влиянием определенного фермента. Например, в нервно-мышечном синапсе и в синаптическом аппарате других холинергических нейронов таким ферментом является антихолинэстераза. Функции медиаторов (нейротрансмиттеров) могут выполнять многие биологические вещества, чаще аминокислоты. По влиянию на синаптические аппараты нейротрансмиттеры могут быть разделены на возбуждающие и тормозные. К возбуждающим относится глутамат и аспартат, а к тормозным — ГАМК и глицин. Кроме того, выделяется группа нейротрансмиттеров, состоящая главным образом из моноаминов (дофамин, норадреналин, серторонин), при этом одни и те же нейротрансмиттеры могут, воздействуя на одни нейроны, оказывать возбуждающее действие, тогда как влияние их на другие нейроны может быть тормозным. Так, ацетилхолин нервно-мышечного синаптического аппарата возбуждает мышечные волокна, а ацетилхолин как медиатор стриопаллидарных нейронов обеспечивает тормозное влияние на клетки бледного шара.
Помимо трансмиттеров, на синаптическую передачу могут оказывать усиливающее или ослабляющее действие нейромодуляторы (эндорфины, сома-тостатин, субстанция Р) и нейрогормоны (ангиотензин, вазопрессин и др.), которые, однако, сами по себе не создают деполяризационного эффекта. Нейрогормоны попадают в кровяное русло и разносятся с кровью на большие расстояния. Их действие уступает модуляторам по темпу, но проявляется длительнее.
Синапсы обеспечивают регуляцию потока нервных импульсов и определяют проведение их всегда в одном направлении. Цепи нейронов, по которым определенные нервные импульсы проходят в одном направлении, формируют проводящие пути. Проводящий путь может состоять из гетерогенных по характеру выделяемого медиатора нейронов. Химическая передача нервного импульса через синаптический аппарат была доказана в 1921 г. австрийским нейрофизиологом О. Леви (Loewi О., 1873-1961).
Axon | |
---|---|
An axon of a multipolar neuron |
|
Identifiers | |
MeSH | D001369 |
FMA | 67308 |
Anatomical terminology
[edit on Wikidata] |
An axon (from Greek ἄξων áxōn, axis), or nerve fiber (or nerve fibre: see spelling differences), is a long, slender projection of a nerve cell, or neuron, in vertebrates, that typically conducts electrical impulses known as action potentials away from the nerve cell body. The function of the axon is to transmit information to different neurons, muscles, and glands. In certain sensory neurons (pseudounipolar neurons), such as those for touch and warmth, the axons are called afferent nerve fibers and the electrical impulse travels along these from the periphery to the cell body and from the cell body to the spinal cord along another branch of the same axon. Axon dysfunction can be the cause of many inherited and acquired neurological disorders that affect both the peripheral and central neurons. Nerve fibers are classed into three types – group A nerve fibers, group B nerve fibers, and group C nerve fibers. Groups A and B are myelinated, and group C are unmyelinated. These groups include both sensory fibers and motor fibers. Another classification groups only the sensory fibers as Type I, Type II, Type III, and Type IV.
An axon is one of two types of cytoplasmic protrusions from the cell body of a neuron; the other type is a dendrite. Axons are distinguished from dendrites by several features, including shape (dendrites often taper while axons usually maintain a constant radius), length (dendrites are restricted to a small region around the cell body while axons can be much longer), and function (dendrites receive signals whereas axons transmit them). Some types of neurons have no axon and transmit signals from their dendrites. In some species, axons can emanate from dendrites known as axon-carrying dendrites.[1] No neuron ever has more than one axon; however in invertebrates such as insects or leeches the axon sometimes consists of several regions that function more or less independently of each other.[2]
Axons are covered by a membrane known as an axolemma; the cytoplasm of an axon is called axoplasm. Most axons branch, in some cases very profusely. The end branches of an axon are called telodendria. The swollen end of a telodendron is known as the axon terminal which joins the dendron or cell body of another neuron forming a synaptic connection. Axons make contact with other cells – usually other neurons but sometimes muscle or gland cells – at junctions called synapses. In some circumstances, the axon of one neuron may form a synapse with the dendrites of the same neuron, resulting in an autapse. At a synapse, the membrane of the axon closely adjoins the membrane of the target cell, and special molecular structures serve to transmit electrical or electrochemical signals across the gap. Some synaptic junctions appear along the length of an axon as it extends; these are called en passant («in passing») synapses and can be in the hundreds or even the thousands along one axon.[3] Other synapses appear as terminals at the ends of axonal branches.
A single axon, with all its branches taken together, can innervate multiple parts of the brain and generate thousands of synaptic terminals. A bundle of axons make a nerve tract in the central nervous system,[4] and a fascicle in the peripheral nervous system. In placental mammals the largest white matter tract in the brain is the corpus callosum, formed of some 200 million axons in the human brain.[4]
Anatomy[edit]
A typical myelinated axon
Axons are the primary transmission lines of the nervous system, and as bundles they form nerves. Some axons can extend up to one meter or more while others extend as little as one millimeter. The longest axons in the human body are those of the sciatic nerve, which run from the base of the spinal cord to the big toe of each foot. The diameter of axons is also variable. Most individual axons are microscopic in diameter (typically about one micrometer (µm) across). The largest mammalian axons can reach a diameter of up to 20 µm. The squid giant axon, which is specialized to conduct signals very rapidly, is close to 1 millimeter in diameter, the size of a small pencil lead. The numbers of axonal telodendria (the branching structures at the end of the axon) can also differ from one nerve fiber to the next. Axons in the central nervous system (CNS) typically show multiple telodendria, with many synaptic end points. In comparison, the cerebellar granule cell axon is characterized by a single T-shaped branch node from which two parallel fibers extend. Elaborate branching allows for the simultaneous transmission of messages to a large number of target neurons within a single region of the brain.
There are two types of axons in the nervous system: myelinated and unmyelinated axons.[5] Myelin is a layer of a fatty insulating substance, which is formed by two types of glial cells: Schwann cells and oligodendrocytes. In the peripheral nervous system Schwann cells form the myelin sheath of a myelinated axon. Oligodendrocytes form the insulating myelin in the CNS. Along myelinated nerve fibers, gaps in the myelin sheath known as nodes of Ranvier occur at evenly spaced intervals. The myelination enables an especially rapid mode of electrical impulse propagation called saltatory conduction.
The myelinated axons from the cortical neurons form the bulk of the neural tissue called white matter in the brain. The myelin gives the white appearance to the tissue in contrast to the grey matter of the cerebral cortex which contains the neuronal cell bodies. A similar arrangement is seen in the cerebellum. Bundles of myelinated axons make up the nerve tracts in the CNS. Where these tracts cross the midline of the brain to connect opposite regions they are called commissures. The largest of these is the corpus callosum that connects the two cerebral hemispheres, and this has around 20 million axons.[4]
The structure of a neuron is seen to consist of two separate functional regions, or compartments – the cell body together with the dendrites as one region, and the axonal region as the other.
Axonal region[edit]
The axonal region or compartment, includes the axon hillock, the initial segment, the rest of the axon, and the axon telodendria, and axon terminals. It also includes the myelin sheath. The Nissl bodies that produce the neuronal proteins are absent in the axonal region.[3] Proteins needed for the growth of the axon, and the removal of waste materials, need a framework for transport. This axonal transport is provided for in the axoplasm by arrangements of microtubules and intermediate filaments known as neurofilaments.
Axon hillock[edit]
Detail showing microtubules at axon hillock and initial segment.
The axon hillock is the area formed from the cell body of the neuron as it extends to become the axon. It precedes the initial segment. The received action potentials that are summed in the neuron are transmitted to the axon hillock for the generation of an action potential from the initial segment.
Axonal initial segment[edit]
The axonal initial segment (AIS) is a structurally and functionally separate microdomain of the axon.[6][7] One function of the initial segment is to separate the main part of an axon from the rest of the neuron; another function is to help initiate action potentials.[8] Both of these functions support neuron cell polarity, in which dendrites (and, in some cases the soma) of a neuron receive input signals at the basal region, and at the apical region the neuron’s axon provides output signals.[9]
The axon initial segment is unmyelinated and contains a specialized complex of proteins. It is between approximately 20 and 60 µm in length and functions as the site of action potential initiation.[10][11] Both the position on the axon and the length of the AIS can change showing a degree of plasticity that can fine-tune the neuronal output.[10][12] A longer AIS is associated with a greater excitability.[12] Plasticity is also seen in the ability of the AIS to change its distribution and to maintain the activity of neural circuitry at a constant level.[13]
The AIS is highly specialized for the fast conduction of nerve impulses. This is achieved by a high concentration of voltage-gated sodium channels in the initial segment where the action potential is initiated.[13] The ion channels are accompanied by a high number of cell adhesion molecules and scaffolding proteins that anchor them to the cytoskeleton.[10] Interactions with ankyrin G are important as it is the major organizer in the AIS.[10]
Axonal transport[edit]
The axoplasm is the equivalent of cytoplasm in the cell. Microtubules form in the axoplasm at the axon hillock. They are arranged along the length of the axon, in overlapping sections, and all point in the same direction – towards the axon terminals.[14] This is noted by the positive endings of the microtubules. This overlapping arrangement provides the routes for the transport of different materials from the cell body.[14] Studies on the axoplasm has shown the movement of numerous vesicles of all sizes to be seen along cytoskeletal filaments – the microtubules, and neurofilaments, in both directions between the axon and its terminals and the cell body.
Outgoing anterograde transport from the cell body along the axon, carries mitochondria and membrane proteins needed for growth to the axon terminal. Ingoing retrograde transport carries cell waste materials from the axon terminal to the cell body.[15] Outgoing and ingoing tracks use different sets of motor proteins.[14] Outgoing transport is provided by kinesin, and ingoing return traffic is provided by dynein. Dynein is minus-end directed.[15] There are many forms of kinesin and dynein motor proteins, and each is thought to carry a different cargo.[14] The studies on transport in the axon led to the naming of kinesin.[14]
Myelination[edit]
TEM of a myelinated axon in cross-section.
In the nervous system, axons may be myelinated, or unmyelinated. This is the provision of an insulating layer, called a myelin sheath. The myelin membrane is unique in its relatively high lipid to protein ratio.[16]
In the peripheral nervous system axons are myelinated by glial cells known as Schwann cells. In the central nervous system the myelin sheath is provided by another type of glial cell, the oligodendrocyte. Schwann cells myelinate a single axon. An oligodendrocyte can myelinate up to 50 axons.[17]
The composition of myelin is different in the two types. In the CNS the major myelin protein is proteolipid protein, and in the PNS it is myelin basic protein.
Nodes of Ranvier[edit]
Nodes of Ranvier (also known as myelin sheath gaps) are short unmyelinated segments of a myelinated axon, which are found periodically interspersed between segments of the myelin sheath. Therefore, at the point of the node of Ranvier, the axon is reduced in diameter.[18] These nodes are areas where action potentials can be generated. In saltatory conduction, electrical currents produced at each node of Ranvier are conducted with little attenuation to the next node in line, where they remain strong enough to generate another action potential. Thus in a myelinated axon, action potentials effectively «jump» from node to node, bypassing the myelinated stretches in between, resulting in a propagation speed much faster than even the fastest unmyelinated axon can sustain.
Axon terminals[edit]
An axon can divide into many branches called telodendria (Greek for ‘end of tree’). At the end of each telodendron is an axon terminal (also called a synaptic bouton, or terminal bouton). Axon terminals contain synaptic vesicles that store the neurotransmitter for release at the synapse. This makes multiple synaptic connections with other neurons possible. Sometimes the axon of a neuron may synapse onto dendrites of the same neuron, when it is known as an autapse.
Action potentials[edit]
Structure of a typical chemical synapse |
---|
Postsynaptic Voltage- Synaptic Neurotransmitter Receptor Neurotransmitter Axon terminal Synaptic cleft Dendrite |
Most axons carry signals in the form of action potentials, which are discrete electrochemical impulses that travel rapidly along an axon, starting at the cell body and terminating at points where the axon makes synaptic contact with target cells. The defining characteristic of an action potential is that it is «all-or-nothing» – every action potential that an axon generates has essentially the same size and shape. This all-or-nothing characteristic allows action potentials to be transmitted from one end of a long axon to the other without any reduction in size. There are, however, some types of neurons with short axons that carry graded electrochemical signals, of variable amplitude.
When an action potential reaches a presynaptic terminal, it activates the synaptic transmission process. The first step is rapid opening of calcium ion channels in the membrane of the axon, allowing calcium ions to flow inward across the membrane. The resulting increase in intracellular calcium concentration causes synaptic vesicles (tiny containers enclosed by a lipid membrane) filled with a neurotransmitter chemical to fuse with the axon’s membrane and empty their contents into the extracellular space. The neurotransmitter is released from the presynaptic nerve through exocytosis. The neurotransmitter chemical then diffuses across to receptors located on the membrane of the target cell. The neurotransmitter binds to these receptors and activates them. Depending on the type of receptors that are activated, the effect on the target cell can be to excite the target cell, inhibit it, or alter its metabolism in some way. This entire sequence of events often takes place in less than a thousandth of a second. Afterward, inside the presynaptic terminal, a new set of vesicles is moved into position next to the membrane, ready to be released when the next action potential arrives. The action potential is the final electrical step in the integration of synaptic messages at the scale of the neuron.[5]
(A) pyramidal cell, interneuron, and short durationwaveform (Axon), overlay of the three average waveforms;
(B) Average and standard error of peak-trough time for pyramidal cells interneurons, and putative axons;
(C) Scatter plot of signal to noise ratios for individual units againstpeak-trough time for axons, pyramidal cells (PYR) and interneurons (INT).
Extracellular recordings of action potential propagation in axons has been demonstrated in freely moving animals. While extracellular somatic action potentials have been used to study cellular activity in freely moving animals such as place cells, axonal activity in both white and gray matter can also be recorded. Extracellular recordings of axon action potential propagation is distinct from somatic action potentials in three ways: 1. The signal has a shorter peak-trough duration (~150μs) than of pyramidal cells (~500μs) or interneurons (~250μs). 2. The voltage change is triphasic. 3. Activity recorded on a tetrode is seen on only one of the four recording wires. In recordings from freely moving rats, axonal signals have been isolated in white matter tracts including the alveus and the corpus callosum as well hippocampal gray matter.[19]
In fact, the generation of action potentials in vivo is sequential in nature, and these sequential spikes constitute the digital codes in the neurons. Although previous studies indicate an axonal origin of a single spike evoked by short-term pulses, physiological signals in vivo trigger the initiation of sequential spikes at the cell bodies of the neurons.[20][21]
In addition to propagating action potentials to axonal terminals, the axon is able to amplify the action potentials, which makes sure a secure propagation of sequential action potentials toward the axonal terminal. In terms of molecular mechanisms, voltage-gated sodium channels in the axons possess lower threshold and shorter refractory period in response to short-term pulses.[22]
Development and growth[edit]
Development[edit]
The development of the axon to its target, is one of the six major stages in the overall development of the nervous system.[23] Studies done on cultured hippocampal neurons suggest that neurons initially produce multiple neurites that are equivalent, yet only one of these neurites is destined to become the axon.[24] It is unclear whether axon specification precedes axon elongation or vice versa,[25] although recent evidence points to the latter. If an axon that is not fully developed is cut, the polarity can change and other neurites can potentially become the axon. This alteration of polarity only occurs when the axon is cut at least 10 μm shorter than the other neurites. After the incision is made, the longest neurite will become the future axon and all the other neurites, including the original axon, will turn into dendrites.[26] Imposing an external force on a neurite, causing it to elongate, will make it become an axon.[27] Nonetheless, axonal development is achieved through a complex interplay between extracellular signaling, intracellular signaling and cytoskeletal dynamics.
[edit]
The extracellular signals that propagate through the extracellular matrix surrounding neurons play a prominent role in axonal development.[28] These signaling molecules include proteins, neurotrophic factors, and extracellular matrix and adhesion molecules.
Netrin (also known as UNC-6) a secreted protein, functions in axon formation. When the UNC-5 netrin receptor is mutated, several neurites are irregularly projected out of neurons and finally a single axon is extended anteriorly.[29][30][31][32] The neurotrophic factors – nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NTF3) are also involved in axon development and bind to Trk receptors.[33]
The ganglioside-converting enzyme plasma membrane ganglioside sialidase (PMGS), which is involved in the activation of TrkA at the tip of neutrites, is required for the elongation of axons. PMGS asymmetrically distributes to the tip of the neurite that is destined to become the future axon.[34]
Intracellular signaling[edit]
During axonal development, the activity of PI3K is increased at the tip of destined axon. Disrupting the activity of PI3K inhibits axonal development. Activation of PI3K results in the production of phosphatidylinositol (3,4,5)-trisphosphate (PtdIns) which can cause significant elongation of a neurite, converting it into an axon. As such, the overexpression of phosphatases that dephosphorylate PtdIns leads into the failure of polarization.[28]
Cytoskeletal dynamics[edit]
The neurite with the lowest actin filament content will become the axon. PGMS concentration and f-actin content are inversely correlated; when PGMS becomes enriched at the tip of a neurite, its f-actin content is substantially decreased.[34] In addition, exposure to actin-depolimerizing drugs and toxin B (which inactivates Rho-signaling) causes the formation of multiple axons. Consequently, the interruption of the actin network in a growth cone will promote its neurite to become the axon.[35]
Growth[edit]
Axon of nine-day-old mouse with growth cone visible
Growing axons move through their environment via the growth cone, which is at the tip of the axon. The growth cone has a broad sheet-like extension called a lamellipodium which contain protrusions called filopodia. The filopodia are the mechanism by which the entire process adheres to surfaces and explores the surrounding environment. Actin plays a major role in the mobility of this system. Environments with high levels of cell adhesion molecules (CAMs) create an ideal environment for axonal growth. This seems to provide a «sticky» surface for axons to grow along. Examples of CAMs specific to neural systems include N-CAM, TAG-1 – an axonal glycoprotein[36] – and MAG, all of which are part of the immunoglobulin superfamily. Another set of molecules called extracellular matrix-adhesion molecules also provide a sticky substrate for axons to grow along. Examples of these molecules include laminin, fibronectin, tenascin, and perlecan. Some of these are surface bound to cells and thus act as short range attractants or repellents. Others are difusible ligands and thus can have long range effects.
Cells called guidepost cells assist in the guidance of neuronal axon growth. These cells that help axon guidance, are typically other neurons that are sometimes immature. When the axon has completed its growth at its connection to the target, the diameter of the axon can increase by up to five times, depending on the speed of conduction required.[37]
It has also been discovered through research that if the axons of a neuron were damaged, as long as the soma (the cell body of a neuron) is not damaged, the axons would regenerate and remake the synaptic connections with neurons with the help of guidepost cells. This is also referred to as neuroregeneration.[38]
Nogo-A is a type of neurite outgrowth inhibitory component that is present in the central nervous system myelin membranes (found in an axon). It has a crucial role in restricting axonal regeneration in adult mammalian central nervous system. In recent studies, if Nogo-A is blocked and neutralized, it is possible to induce long-distance axonal regeneration which leads to enhancement of functional recovery in rats and mouse spinal cord. This has yet to be done on humans.[39] A recent study has also found that macrophages activated through a specific inflammatory pathway activated by the Dectin-1 receptor are capable of promoting axon recovery, also however causing neurotoxicity in the neuron.[40]
Length regulation[edit]
Axons vary largely in length from a few micrometers up to meters in some animals. This emphasizes that there must be a cellular length regulation mechanism allowing the neurons both to sense the length of their axons and to control their growth accordingly. It was discovered that motor proteins play an important role in regulating the length of axons.[41] Based on this observation, researchers developed an explicit model for axonal growth describing how motor proteins could affect the axon length on the molecular level.[42][43][44][45] These studies suggest that motor proteins carry signaling molecules from the soma to the growth cone and vice versa whose concentration oscillates in time with a length-dependent frequency.
Classification[edit]
The axons of neurons in the human peripheral nervous system can be classified based on their physical features and signal conduction properties. Axons were known to have different thicknesses (from 0.1 to 20 µm)[3] and these differences were thought to relate to the speed at which an action potential could travel along the axon – its conductance velocity. Erlanger and Gasser proved this hypothesis, and identified several types of nerve fiber, establishing a relationship between the diameter of an axon and its nerve conduction velocity. They published their findings in 1941 giving the first classification of axons.
Axons are classified in two systems. The first one introduced by Erlanger and Gasser, grouped the fibers into three main groups using the letters A, B, and C. These groups, group A, group B, and group C include both the sensory fibers (afferents) and the motor fibers (efferents). The first group A, was subdivided into alpha, beta, gamma, and delta fibers – Aα, Aβ, Aγ, and Aδ. The motor neurons of the different motor fibers, were the lower motor neurons – alpha motor neuron, beta motor neuron, and gamma motor neuron having the Aα, Aβ, and Aγ nerve fibers, respectively.
Later findings by other researchers identified two groups of Aa fibers that were sensory fibers. These were then introduced into a system that only included sensory fibers (though some of these were mixed nerves and were also motor fibers). This system refers to the sensory groups as Types and uses Roman numerals: Type Ia, Type Ib, Type II, Type III, and Type IV.
Motor[edit]
Lower motor neurons have two kind of fibers:
Type | Erlanger-Gasser Classification |
Diameter (µm) |
Myelin | Conduction velocity (meters/second) |
Associated muscle fibers |
---|---|---|---|---|---|
Alpha (α) motor neuron | Aα | 13–20 | Yes | 80–120 | Extrafusal muscle fibers |
Beta (β) motor neuron | Aβ | ||||
Gamma (γ) motor neuron | Aγ | 5-8 | Yes | 4–24[46][47] | Intrafusal muscle fibers |
Sensory[edit]
Different sensory receptors innervate different types of nerve fibers. Proprioceptors are innervated by type Ia, Ib and II sensory fibers, mechanoreceptors by type II and III sensory fibers and nociceptors and thermoreceptors by type III and IV sensory fibers.
Type | Erlanger-Gasser Classification |
Diameter (µm) |
Myelin | Conduction velocity (m/s) |
Associated sensory receptors | Proprioceptors | Mechanoceptors | Nociceptors and thermoreceptors |
---|---|---|---|---|---|---|---|---|
Ia | Aα | 13–20 | Yes | 80–120 | Primary receptors of muscle spindle (annulospiral ending) | ✔ | ||
Ib | Aα | 13–20 | Yes | 80–120 | Golgi tendon organ | |||
II | Aβ | 6–12 | Yes | 33–75 | Secondary receptors of muscle spindle (flower-spray ending). All cutaneous mechanoreceptors |
✔ | ||
III | Aδ | 1–5 | Thin | 3–30 | Free nerve endings of touch and pressure Nociceptors of lateral spinothalamic tract Cold thermoreceptors |
✔ | ||
IV | C | 0.2–1.5 | No | 0.5–2.0 | Nociceptors of anterior spinothalamic tract Warmth receptors |
Autonomic[edit]
The autonomic nervous system has two kinds of peripheral fibers:
Type | Erlanger-Gasser Classification |
Diameter (µm) |
Myelin[48] | Conduction velocity (m/s) |
---|---|---|---|---|
preganglionic fibers | B | 1–5 | Yes | 3–15 |
postganglionic fibers | C | 0.2–1.5 | No | 0.5–2.0 |
Clinical significance[edit]
In order of degree of severity, injury to a nerve can be described as neurapraxia, axonotmesis, or neurotmesis.
Concussion is considered a mild form of diffuse axonal injury.[49] Axonal injury can also cause central chromatolysis. The dysfunction of axons in the nervous system is one of the major causes of many inherited neurological disorders that affect both peripheral and central neurons.[5]
When an axon is crushed, an active process of axonal degeneration takes place at the part of the axon furthest from the cell body. This degeneration takes place quickly following the injury, with the part of the axon being sealed off at the membranes and broken down by macrophages. This is known as Wallerian degeneration.[50] Dying back of an axon can also take place in many neurodegenerative diseases, particularly when axonal transport is impaired, this is known as Wallerian-like degeneration.[51] Studies suggest that the degeneration happens as
a result of the axonal protein NMNAT2, being prevented from reaching all of the axon.[52]
Demyelination of axons causes the multitude of neurological symptoms found in the disease multiple sclerosis.
Dysmyelination is the abnormal formation of the myelin sheath. This is implicated in several leukodystrophies, and also in schizophrenia.[53][54][55]
A severe traumatic brain injury can result in widespread lesions to nerve tracts damaging the axons in a condition known as diffuse axonal injury. This can lead to a persistent vegetative state.[56] It has been shown in studies on the rat that axonal damage from a single mild traumatic brain injury, can leave a susceptibility to further damage, after repeated mild traumatic brain injuries.[57]
A nerve guidance conduit is an artificial means of guiding axon growth to enable neuroregeneration, and is one of the many treatments used for different kinds of nerve injury.
History[edit]
German anatomist Otto Friedrich Karl Deiters is generally credited with the discovery of the axon by distinguishing it from the dendrites.[5] Swiss Rüdolf Albert von Kölliker and German Robert Remak were the first to identify and characterize the axon initial segment. Kölliker named the axon in 1896.[58] Louis-Antoine Ranvier was the first to describe the gaps or nodes found on axons and for this contribution these axonal features are now commonly referred to as the nodes of Ranvier. Santiago Ramón y Cajal, a Spanish anatomist, proposed that axons were the output components of neurons, describing their functionality.[5] Joseph Erlanger and Herbert Gasser earlier developed the classification system for peripheral nerve fibers,[59] based on axonal conduction velocity, myelination, fiber size etc. Alan Hodgkin and Andrew Huxley also employed the squid giant axon (1939) and by 1952 they had obtained a full quantitative description of the ionic basis of the action potential, leading to the formulation of the Hodgkin–Huxley model. Hodgkin and Huxley were awarded jointly the Nobel Prize for this work in 1963. The formulae detailing axonal conductance were extended to vertebrates in the Frankenhaeuser–Huxley equations. The understanding of the biochemical basis for action potential propagation has advanced further, and includes many details about individual ion channels.
Other animals[edit]
The axons in invertebrates have been extensively studied. The longfin inshore squid, often used as a model organism has the longest known axon.[60] The giant squid has the largest axon known. Its size ranges from 0.5 (typically) to 1 mm in diameter and is used in the control of its jet propulsion system. The fastest recorded conduction speed of 210 m/s, is found in the ensheathed axons of some pelagic Penaeid shrimps[61] and the usual range is between 90 and 200 meters/s[62] (cf 100–120 m/s for the fastest myelinated vertebrate axon.)
In other cases as seen in rat studies an axon originates from a dendrite; such axons are said to have «dendritic origin». Some axons with dendritic origin similarly have a «proximal» initial segment that starts directly at the axon origin, while others have a «distal» initial segment, discernibly separated from the axon origin.[63] In many species some of the neurons have axons that emanate from the dendrite and not from the cell body, and these are known as axon-carrying dendrites.[1] In many cases, an axon originates at an axon hillock on the soma; such axons are said to have «somatic origin». Some axons with somatic origin have a «proximal» initial segment adjacent the axon hillock, while others have a «distal» initial segment, separated from the soma by an extended axon hillock.[63]
See also[edit]
- Electrophysiology
- Ganglionic eminence
- Giant axonal neuropathy
- Neuronal tracing
- Pioneer axon
References[edit]
- ^ a b Triarhou LC (2014). «Axons emanating from dendrites: phylogenetic repercussions with Cajalian hues». Frontiers in Neuroanatomy. 8: 133. doi:10.3389/fnana.2014.00133. PMC 4235383. PMID 25477788.
- ^ Yau KW (December 1976). «Receptive fields, geometry and conduction block of sensory neurones in the central nervous system of the leech». The Journal of Physiology. 263 (3): 513–38. doi:10.1113/jphysiol.1976.sp011643. PMC 1307715. PMID 1018277.
- ^ a b c Squire, Larry (2013). Fundamental neuroscience (4th ed.). Amsterdam: Elsevier/Academic Press. pp. 61–65. ISBN 978-0-12-385-870-2.
- ^ a b c Luders E, Thompson PM, Toga AW (August 2010). «The development of the corpus callosum in the healthy human brain». The Journal of Neuroscience. 30 (33): 10985–90. doi:10.1523/JNEUROSCI.5122-09.2010. PMC 3197828. PMID 20720105.
- ^ a b c d e Debanne D, Campanac E, Bialowas A, Carlier E, Alcaraz G (April 2011). «Axon physiology» (PDF). Physiological Reviews. 91 (2): 555–602. doi:10.1152/physrev.00048.2009. PMID 21527732. S2CID 13916255.
- ^ Nelson AD, Jenkins PM (2017). «Axonal Membranes and Their Domains: Assembly and Function of the Axon Initial Segment and Node of Ranvier». Frontiers in Cellular Neuroscience. 11: 136. doi:10.3389/fncel.2017.00136. PMC 5422562. PMID 28536506.
- ^ Leterrier C, Clerc N, Rueda-Boroni F, Montersino A, Dargent B, Castets F (2017). «Ankyrin G Membrane Partners Drive the Establishment and Maintenance of the Axon Initial Segment». Frontiers in Cellular Neuroscience. 11: 6. doi:10.3389/fncel.2017.00006. PMC 5266712. PMID 28184187.
- ^ Leterrier C (February 2018). «The Axon Initial Segment: An Updated Viewpoint». The Journal of Neuroscience. 38 (9): 2135–2145. doi:10.1523/jneurosci.1922-17.2018. PMC 6596274. PMID 29378864.
- ^ Rasband MN (August 2010). «The axon initial segment and the maintenance of neuronal polarity». Nature Reviews. Neuroscience. 11 (8): 552–62. doi:10.1038/nrn2852. PMID 20631711. S2CID 23996233.
- ^ a b c d Jones SL, Svitkina TM (2016). «Axon Initial Segment Cytoskeleton: Architecture, Development, and Role in Neuron Polarity». Neural Plasticity. 2016: 6808293. doi:10.1155/2016/6808293. PMC 4967436. PMID 27493806.
- ^ Clark BD, Goldberg EM, Rudy B (December 2009). «Electrogenic tuning of the axon initial segment». The Neuroscientist. 15 (6): 651–68. doi:10.1177/1073858409341973. PMC 2951114. PMID 20007821.
- ^ a b Yamada R, Kuba H (2016). «Structural and Functional Plasticity at the Axon Initial Segment». Frontiers in Cellular Neuroscience. 10: 250. doi:10.3389/fncel.2016.00250. PMC 5078684. PMID 27826229.
- ^ a b Susuki K, Kuba H (March 2016). «Activity-dependent regulation of excitable axonal domains». The Journal of Physiological Sciences. 66 (2): 99–104. doi:10.1007/s12576-015-0413-4. PMID 26464228. S2CID 18862030.
- ^ a b c d e Alberts B (2004). Essential cell biology: an introduction to the molecular biology of the cell (2nd ed.). New York: Garland. pp. 584–587. ISBN 978-0-8153-3481-1.
- ^ a b Alberts B (2002). Molecular biology of the cell (4th ed.). New York: Garland. pp. 979–981. ISBN 978-0-8153-4072-0.
- ^ Ozgen, H; Baron, W; Hoekstra, D; Kahya, N (September 2016). «Oligodendroglial membrane dynamics in relation to myelin biogenesis». Cellular and Molecular Life Sciences. 73 (17): 3291–310. doi:10.1007/s00018-016-2228-8. PMC 4967101. PMID 27141942.
- ^ Sadler, T. (2010). Langman’s medical embryology (11th ed.). Philadelphia: Lippincott William & Wilkins. p. 300. ISBN 978-0-7817-9069-7.
- ^ Hess A, Young JZ (November 1952). «The nodes of Ranvier». Proceedings of the Royal Society of London. Series B, Biological Sciences. Series B. 140 (900): 301–20. Bibcode:1952RSPSB.140..301H. doi:10.1098/rspb.1952.0063. JSTOR 82721. PMID 13003931. S2CID 11963512.
- ^ Robbins AA, Fox SE, Holmes GL, Scott RC, Barry JM (November 2013). «Short duration waveforms recorded extracellularly from freely moving rats are representative of axonal activity». Frontiers in Neural Circuits. 7 (181): 181. doi:10.3389/fncir.2013.00181. PMC 3831546. PMID 24348338.
- ^ Rongjing Ge, Hao Qian and Jin-Hui Wang* (2011) Molecular Brain 4(19), 1~11
- ^ Rongjing Ge, Hao Qian, Na Chen and Jin-Hui Wang* (2014) Molecular Brain 7(26):1-16
- ^ Chen N, Yu J, Qian H, Ge R, Wang JH (July 2010). «Axons amplify somatic incomplete spikes into uniform amplitudes in mouse cortical pyramidal neurons». PLOS ONE. 5 (7): e11868. Bibcode:2010PLoSO…511868C. doi:10.1371/journal.pone.0011868. PMC 2912328. PMID 20686619.
- ^ Wolpert, Lewis (2015). Principles of development (5th ed.). pp. 520–524. ISBN 978-0-19-967814-3.
- ^ Fletcher TL, Banker GA (December 1989). «The establishment of polarity by hippocampal neurons: the relationship between the stage of a cell’s development in situ and its subsequent development in culture». Developmental Biology. 136 (2): 446–54. doi:10.1016/0012-1606(89)90269-8. PMID 2583372.
- ^ Jiang H, Rao Y (May 2005). «Axon formation: fate versus growth». Nature Neuroscience. 8 (5): 544–6. doi:10.1038/nn0505-544. PMID 15856056. S2CID 27728967.
- ^ Goslin K, Banker G (April 1989). «Experimental observations on the development of polarity by hippocampal neurons in culture». The Journal of Cell Biology. 108 (4): 1507–16. doi:10.1083/jcb.108.4.1507. PMC 2115496. PMID 2925793.
- ^ Lamoureux P, Ruthel G, Buxbaum RE, Heidemann SR (November 2002). «Mechanical tension can specify axonal fate in hippocampal neurons». The Journal of Cell Biology. 159 (3): 499–508. doi:10.1083/jcb.200207174. PMC 2173080. PMID 12417580.
- ^ a b Arimura N, Kaibuchi K (March 2007). «Neuronal polarity: from extracellular signals to intracellular mechanisms». Nature Reviews. Neuroscience. 8 (3): 194–205. doi:10.1038/nrn2056. PMID 17311006. S2CID 15556921.
- ^ Neuroglia and pioneer neurons express UNC-6 to provide global and local netrin cues for guiding migrations in C. elegans
- ^ Serafini T, Kennedy TE, Galko MJ, Mirzayan C, Jessell TM, Tessier-Lavigne M (August 1994). «The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6». Cell. 78 (3): 409–24. doi:10.1016/0092-8674(94)90420-0. PMID 8062384. S2CID 22666205.
- ^ Hong K, Hinck L, Nishiyama M, Poo MM, Tessier-Lavigne M, Stein E (June 1999). «A ligand-gated association between cytoplasmic domains of UNC5 and DCC family receptors converts netrin-induced growth cone attraction to repulsion». Cell. 97 (7): 927–41. doi:10.1016/S0092-8674(00)80804-1. PMID 10399920. S2CID 18043414.
- ^ Hedgecock EM, Culotti JG, Hall DH (January 1990). «The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans». Neuron. 4 (1): 61–85. doi:10.1016/0896-6273(90)90444-K. PMID 2310575. S2CID 23974242.
- ^ Huang EJ, Reichardt LF (2003). «Trk receptors: roles in neuronal signal transduction». Annual Review of Biochemistry. 72: 609–42. doi:10.1146/annurev.biochem.72.121801.161629. PMID 12676795. S2CID 10217268.
- ^ a b Da Silva JS, Hasegawa T, Miyagi T, Dotti CG, Abad-Rodriguez J (May 2005). «Asymmetric membrane ganglioside sialidase activity specifies axonal fate». Nature Neuroscience. 8 (5): 606–15. doi:10.1038/nn1442. PMID 15834419. S2CID 25227765.
- ^ Bradke F, Dotti CG (March 1999). «The role of local actin instability in axon formation». Science. 283 (5409): 1931–4. Bibcode:1999Sci…283.1931B. doi:10.1126/science.283.5409.1931. PMID 10082468.
- ^ Furley AJ, Morton SB, Manalo D, Karagogeos D, Dodd J, Jessell TM (April 1990). «The axonal glycoprotein TAG-1 is an immunoglobulin superfamily member with neurite outgrowth-promoting activity». Cell. 61 (1): 157–70. doi:10.1016/0092-8674(90)90223-2. PMID 2317872. S2CID 28813676.
- ^ Alberts, Bruce (2015). Molecular biology of the cell (Sixth ed.). p. 947. ISBN 9780815344643.
- ^ Kunik D, Dion C, Ozaki T, Levin LA, Costantino S (2011). «Laser-based single-axon transection for high-content axon injury and regeneration studies». PLOS ONE. 6 (11): e26832. Bibcode:2011PLoSO…626832K. doi:10.1371/journal.pone.0026832. PMC 3206876. PMID 22073205.
- ^ Schwab ME (February 2004). «Nogo and axon regeneration». Current Opinion in Neurobiology. 14 (1): 118–24. doi:10.1016/j.conb.2004.01.004. PMID 15018947. S2CID 9672315.
- ^ Gensel JC, Nakamura S, Guan Z, van Rooijen N, Ankeny DP, Popovich PG (March 2009). «Macrophages promote axon regeneration with concurrent neurotoxicity». The Journal of Neuroscience. 29 (12): 3956–68. doi:10.1523/JNEUROSCI.3992-08.2009. PMC 2693768. PMID 19321792.
- ^ Myers KA, Baas PW (September 2007). «Kinesin-5 regulates the growth of the axon by acting as a brake on its microtubule array». The Journal of Cell Biology. 178 (6): 1081–91. doi:10.1083/jcb.200702074. PMC 2064629. PMID 17846176.
- ^ Rishal I, Kam N, Perry RB, Shinder V, Fisher EM, Schiavo G, Fainzilber M (June 2012). «A motor-driven mechanism for cell-length sensing». Cell Reports. 1 (6): 608–16. doi:10.1016/j.celrep.2012.05.013. PMC 3389498. PMID 22773964.
- ^ Karamched BR, Bressloff PC (May 2015). «Delayed feedback model of axonal length sensing». Biophysical Journal. 108 (9): 2408–19. Bibcode:2015BpJ…108.2408K. doi:10.1016/j.bpj.2015.03.055. PMC 4423051. PMID 25954897.
- ^ Bressloff PC, Karamched BR (2015). «A frequency-dependent decoding mechanism for axonal length sensing». Frontiers in Cellular Neuroscience. 9: 281. doi:10.3389/fncel.2015.00281. PMC 4508512. PMID 26257607.
- ^ Folz F, Wettmann L, Morigi G, Kruse K (May 2019). «Sound of an axon’s growth». Physical Review E. 99 (5–1): 050401. arXiv:1807.04799. Bibcode:2019PhRvE..99e0401F. doi:10.1103/PhysRevE.99.050401. PMID 31212501. S2CID 118682719.
- ^ Andrew BL, Part NJ (April 1972). «Properties of fast and slow motor units in hind limb and tail muscles of the rat». Quarterly Journal of Experimental Physiology and Cognate Medical Sciences. 57 (2): 213–25. doi:10.1113/expphysiol.1972.sp002151. PMID 4482075.
- ^ Russell NJ (January 1980). «Axonal conduction velocity changes following muscle tenotomy or deafferentation during development in the rat». The Journal of Physiology. 298: 347–60. doi:10.1113/jphysiol.1980.sp013085. PMC 1279120. PMID 7359413.
- ^ Pocock G, Richards CD, et al. (2004). Human Physiology (2nd ed.). New York: Oxford University Press. pp. 187–189. ISBN 978-0-19-858527-5.
- ^ Dawodu ST (16 August 2017). «Traumatic Brain Injury (TBI) — Definition, Epidemiology, Pathophysiology». Medscape. Archived from the original on 12 June 2018. Retrieved 14 July 2018.
- ^ Trauma and Wallerian Degeneration Archived 2 May 2006 at the Wayback Machine, University of California, San Francisco
- ^ Coleman MP, Freeman MR (1 June 2010). «Wallerian degeneration, wld(s), and nmnat». Annual Review of Neuroscience. 33 (1): 245–67. doi:10.1146/annurev-neuro-060909-153248. PMC 5223592. PMID 20345246.
- ^ Gilley J, Coleman MP (January 2010). «Endogenous Nmnat2 is an essential survival factor for maintenance of healthy axons». PLOS Biology. 8 (1): e1000300. doi:10.1371/journal.pbio.1000300. PMC 2811159. PMID 20126265.
- ^ Krämer-Albers EM, Gehrig-Burger K, Thiele C, Trotter J, Nave KA (November 2006). «Perturbed interactions of mutant proteolipid protein/DM20 with cholesterol and lipid rafts in oligodendroglia: implications for dysmyelination in spastic paraplegia». The Journal of Neuroscience. 26 (45): 11743–52. doi:10.1523/JNEUROSCI.3581-06.2006. PMC 6674790. PMID 17093095.
- ^ Matalon R, Michals-Matalon K, Surendran S, Tyring SK (2006). «Canavan disease: studies on the knockout mouse». N-Acetylaspartate. Adv. Exp. Med. Biol. Advances in Experimental Medicine and Biology. Vol. 576. pp. 77–93, discussion 361–3. doi:10.1007/0-387-30172-0_6. ISBN 978-0-387-30171-6. PMID 16802706. S2CID 44405442.
- ^ Tkachev D, Mimmack ML, Huffaker SJ, Ryan M, Bahn S (August 2007). «Further evidence for altered myelin biosynthesis and glutamatergic dysfunction in schizophrenia». The International Journal of Neuropsychopharmacology. 10 (4): 557–63. doi:10.1017/S1461145706007334. PMID 17291371.
- ^ «Brain Injury, Traumatic». Medcyclopaedia. GE. Archived from the original on 26 May 2011. Retrieved 20 June 2018.
- ^ Wright DK, Brady RD, Kamnaksh A, Trezise J, Sun M, McDonald SJ, et al. (October 2019). «Repeated mild traumatic brain injuries induce persistent changes in plasma protein and magnetic resonance imaging biomarkers in the rat». Scientific Reports. 9 (1): 14626. Bibcode:2019NatSR…914626W. doi:10.1038/s41598-019-51267-w. PMC 6787341. PMID 31602002.
- ^ Finger S (1994). Origins of neuroscience: a history of explorations into brain function. Oxford University Press. p. 47. ISBN 9780195146943. OCLC 27151391.
Kölliker would give the «axon» its name in 1896.
- ^ Grant G (December 2006). «The 1932 and 1944 Nobel Prizes in physiology or medicine: rewards for ground-breaking studies in neurophysiology». Journal of the History of the Neurosciences. 15 (4): 341–57. doi:10.1080/09647040600638981. PMID 16997762. S2CID 37676544.
- ^ Hellier, Jennifer L. (16 December 2014). The Brain, the Nervous System, and Their Diseases [3 volumes]. ABC-CLIO. ISBN 9781610693387. Archived from the original on 14 March 2018.
- ^ Hsu K, Terakawa S (July 1996). «Fenestration in the myelin sheath of nerve fibers of the shrimp: a novel node of excitation for saltatory conduction». Journal of Neurobiology. 30 (3): 397–409. doi:10.1002/(SICI)1097-4695(199607)30:3<397::AID-NEU8>3.0.CO;2-#. PMID 8807532.
- ^ Salzer JL, Zalc B (October 2016). «Myelination». Current Biology. 26 (20): R971–R975. doi:10.1016/j.cub.2016.07.074. PMID 27780071.
- ^ a b Höfflin F, Jack A, Riedel C, Mack-Bucher J, Roos J, Corcelli C, et al. (2017). «Heterogeneity of the Axon Initial Segment in Interneurons and Pyramidal Cells of Rodent Visual Cortex». Frontiers in Cellular Neuroscience. 11: 332. doi:10.3389/fncel.2017.00332. PMC 5684645. PMID 29170630.
External links[edit]
- Histology image: 3_09 at the University of Oklahoma Health Sciences Center – «Slide 3 Spinal cord»