По ходу аксона могут образовываться его ответвления это

  1. Структура и функции нейронов

Нейроны
являются возбудимыми клетками нервной
системы. В отличие от глиальных клеток
они способны возбуждаться (генерировать
потенциалы действия) и проводить
возбуждение. Нейроны высокоспециализированные
клетки и в течении жизни не делятся.

Каждый
нейрон имеет расширенную центральную
часть: тело – сому и отростки. Сома
нейрона имеет ядро и клеточные органоиды.
Основной функцией сомы является регуляция
обмена веществ.

Число
отростков у нейронов различно, но по
строению и выполняемой функции их делят
на два типа. Одни – длинный отросток,
проводящий возбуждение от тела клетки
к другим нейронам или к периферическим
органам, отходит от сомы в месте, которое
называется аксонным
холмиком
.
Здесь генерируется потенциал действия
– специфический электрический ответ
возбудившейся нервной клетки. По ходу
аксона могут образовываться его
ответвления – коллатерали.

Часть
аксонов центральной нервной системы
покрывается специальным электроизолирующим
веществом – миелином. Миелинизацию
аксонов осуществляют клетки глии. В
центральной нервной системе эту роль
выполняют олигодендроциты, в периферической
Шванновские
клетки
,
являющиеся разновидностью олигодендроцитов.
Аксон не сплошь покрыт миелином. В
миелиновой оболочке существуют регулярные
перерывы – перехваты
Ранвье
.
Миелиновая оболочка выполняет изолирующую,
опорную, барьерную и, возможно, трофическую
и транспортную функции.

Другим
типом отростков нервных клеток являются
дендриты
– короткие, сильно ветвящиеся отростки
(от
слова dendro
– дерево, ветвь). Нервная клетка несет
на себе от одного до множества дендритов.
Основной функцией дендритов является
сбор информации от множества других
нейронов. В ЦНС тела нейронов сосредоточены
в сером веществе больших полушарий
головного мозга, подкорковых ядрах,
мозговом стволе, мозжечке и спинном
мозге. Миелинизированные волокна
образуют белое вещество различных
отделов спинного и головного мозга.

Существует
несколько классификаций нейронов,
основанных на разных признаках: по форме
сомы, количеству отростков, функциям и
эффектам, которые нейрон оказывает на
другие клетки.

В
зависимости от формы сомы различают
зернистые (ганглиозные) нейроны, у
которых сома имеет округлую форму;
пирамидные нейроны разных размеров –
большие и малые пирамиды; звездчатые
нейроны; веретенообразные нейроны.

По
количеству отростков выделяют униполярные
нейроны, имеющие один отросток, отходящий
от сомы клеток; псевдоуниполярные
нейроны (такие нейроны имеют Т-образный
ветвящийся отросток); биполярные нейроны,
имеющие один дендрит и один аксон, и
мультиполярные нейроны, которые имеют
множество дендритов и один аксон.

По
выполняемым функциям нейроны бывают:
афферентные (рецепторные или
чувствительные), эфферентные (или
эффекторные) и вставочные (контактные
или промежуточные). Афферентные
нейроны

сенсорные (псевдоуниполярные), их сомы
расположены вне центральной нервной
системы в ганглиях (спинномозговых или
черепно-мозговых). Эти нейроны имеют
один дендрит, который подходит к
рецепторам (кожи, мышц, сухожилий и
т.д.). Эфферентные
нейроны

регулируют работу эффекторов (мышц,
желез и т.д.). Это мультиполярные нейроны.
Короткие, обильно ветвящиеся дендриты
воспринимают импульсы от других нейронов,
а длинные аксоны выходят за пределы
центральной нервной системы и в составе
нерва идут к эффекторам (рабочим органам),
например, к скелетной мышце. И, наконец,
вставочные
нейроны,
которых огромное количество и они не
относятся ни к первому, ни ко второму
типу нейронов, составляют основную
массу мозга. Они осуществляют связь
между афферентными и эфферентными
нейронами, перерабатывают информацию,
поступающие от рецепторов в центральную
нервную систему. В основном это
мультиполярные нейроны звездчатой
формы.среди вставочных нейронов различают
нейроны с длинными и короткими аксонами.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Нейроны (рис. 2) являются возбудимыми клетками нервной системы. В отличие от глиальных клеток они способны возбуждаться (генерировать потенциалы действия) и проводить возбуждение. Нейроны высокоспециализированные клетки и в течение жизни не делятся.

В нейроне выделяют тело (сому) и отростки. Сома нейрона имеет ядро и клеточные органоиды (рис. 2,1). Основной функцией сомы является осуществление метаболизма клетки.

7
Число отростков у нейронов различно, но по строению и выполняемой функции их делят на два типа. Одни — короткие, сильно ветвящиеся отростки, которые называются дендритами (от dendro

  • дерево, ветвь). Нервная клетка несет на себе от одного до множества дендритов (рис. 2, 2). Основной функцией дендритов является сбор информации от множества других нейронов. Ребенок рождается с ограниченным числом дендритов (межнейронных связей), и увеличение массы мозга, которое происходит на этапах постнатального развития, реализуется за счет увеличения массы дендритов и глиальных элементов.

Другим типом отростков нервных клеток являются аксоны (рис. 2, 4). Аксон в нейроне один и представляет собой более или менее длинный отросток, ветвящийся только на дальнем от сомы конце. Эти ветвления аксона называются аксонными терминалами (окончаниями) (рис. 2, 6). Место нейрона, от которого начинается аксон (рис. 2, 7; 6, 2), имеет особое функциональное значение и называется аксонным холмиком (рис. 2, 7). Здесь генерируется потенциал действия — специфический электрический ответ возбудившейся нервной клетки. Функцией же аксона является проведение нервного импульса к аксонным терминалям. По ходу аксона могут образовываться его ответвления — коллатерали (рис.2, 5). В месте отхождения коллатерали (бифуркации) импульс «дублируется» и распространяется как по основному ходу аксона, так и по коллатерали.

Часть аксонов центральной нервной системы покрывается специальным электроизолирующим веществом — миелином. Миелинизацию аксонов осуществляют клетки глии. В центральной нервной системе эту роль выполняют олигодендроциты, в периферической — Шванновские клетки (рис. 2, 3; 3, 2), являющиеся

8

  1. — связь между телом клетки глии и миелиновой оболочкой; 2 — олигодендроцит; 3 — гребешок; 4 плазматическая мембрана; 5 — цитоплазма олигодендроцита; 6 — аксон нейрона; 7 — перехват Ранвье; 8 мезаксон; 9 — петля плазматической мембраны

’              *7              Щ



разновидностью олигодендроцитов. Олигодендроцит оборачивается вокруг аксона, образуя многослойную оболочку. Миелинизации не подвергается область аксонного холмика (рис. 2, 7) и терминали аксона. Цитоплазма глиальной клетки выдавливается из межмембранного пространства в процессе «обертывания». Таким образом, миелиновая оболочка аксона состоит из плотно упакованных, перемежающихся липидных и белковых мембранных слоев (рис. 3, 4). Аксон не сплошь покрыт миелином. В миелиновой оболочке существуют регулярные перерывы — перехваты Ранвье (рис. 3, 7). Ширина такого перехвата от 0,5 до 2, 5 мкм. Функция перехватов Ранвье — быстрое скачкообразное (сальтаторное) распространение потенциалов действия, осуществляющееся без затухания. В центральной нервной системе аксоны различных нейронов, направляющиеся к одной структуре, образуют упорядоченные пучки —

9

За пределами ЦНС терминали могут заканчиваться как на нейронных элементах, так и на других возбудимых клетках (мышечных или железистых). В любом случае между нейроном и последующей клеткой образуется специфический контакт — синапс (рис. 4, 4). В образовании синапса участвуют как аксонная терминаль (пресинаптическая часть), так и мембрана последующей клетки (постсинаптическая часть). Синапс состоит из пресинаптической бляшки (расширение терминали аксона), оканчивающейся пресинаптической мембраной (рис. 4, 5), и постсинаптической мембраны (участка мембраны постсинаптической клетки, лежащего под синаптической бляшкой) (рис. 4, 7). Между пресинаптической и постсинаптической мембранами расположена синаптическая щель (рис. 4, 4).

От ее величины зависит тип передачи информации через синапс. Если расстояние между мембранами нейронов не превышает

10

2—4 нм или они контактируют между собой, то такой синапс является электрическим, поскольку подобное соединение обеспечивает низкоомную электрическую связь между этими клетками, позволяющую электрическому потенциалу непосредственно или электротонически передаваться от клетки к клетке. Доля электрических синапсов в ЦНС позвоночных очень мала.

Чаще всего мембраны нейронов расположены в непосредственной близости друг к другу и разделены обычным межклеточным пространством (щелью шириной примерно 20 нм) — смежное соединение. Такая смежность мембран облегчает перемещение из одной клетки в межклеточную щель химических веществ (ионов, метаболитов нейронов), которые оказывают влияние как на ту же самую клетку, так и на отростки соседних нейронов. Эти соединения нейронов относят к химическим синапсам.

В пресинаптическом окончании химического синапса находятся пузырьки — везикулы (рис. 4, 5), содержащие вещество — передатчик, называемое медиатором. В момент прихода к синаптической бляшке электрического импульса везикулы открываются в пресинаптическую щель, выбрасывая туда медиатор. Медиатор диффундирует через щель и на постсинаптической мембране взаимодействует с рецептором (рис. 4, 6), специфически чувствительным к медиатору, при этом возникает постсинаптический потенциал. Исключением из данного правила являются пептидергические нейроны, не имеющие в пресинаптической области везикул, так как медиатор- пептид синтезируется в соме нейрона и транспортируется по аксону в зону контакта.

Таким образом, информация в нервной системе передается только в одном направлении (от пресинаптического нейрона к постсинаптическому) и в этом процессе участвует биологически активное вещество — медиатор.

До 50-х годов XX столетия к медиаторам относили две группы низкомолекулярных соединений: амины (ацетилхолин, адреналин, норадреналин, серотонин, дофамин) и аминокислоты (гамма- аминомасляная кислота, глутамат, аспартат, глицин). Позже было показано, что специфическую группу медиаторов составляют нейропептиды, которые могут выступать также и в качестве нейромодуляторов (веществ, изменяющих величину ответа нейрона на стимул).

В настоящее время известно, что нейрон может синтезировать и выделять несколько нейромедиаторов (сосуществующие медиаторы). Такое представление о химическом кодировании вошло в

11

основу принципа множественности химических синапсов. Нейроны обладают нейромедиаторной пластичностью, т.е. способны менять основной медиатор в процессе развития. Сочетание медиаторов может быть неодинаковым для разных синапсов.

В нервной системе существуют особые нервные клетки — нейросекреторные. Они имеют типичную структурную и функциональную (т.е. способность проводить нервный импульс) нейрональную организацию, а их специфической особенностью является нейросекреторная функция, связанная с секрецией биологически активных веществ. Функциональное значение этого механизма состоит в обеспечении регуляторной химической коммуникации между центральной нервной и эндокринной системами, осуществляемой с помощью нейросекретируемых продуктов.

В процессе эволюции клетки, входящие в состав примитивной нервной системы, специализировались в двух направлениях: обеспечение быстро протекающих процессов, т.е. межнейронное взаимодействие, и обеспечение медленно текущих процессов, связанных с продукцией нейрогормонов, действующих на клетки-мишени на расстоянии. В процессе эволюции из клеток, совмещающих сенсорную, проводниковую и секреторную функции, сформировались специализированные нейроны, в том числе и нейросекреторные. Следовательно,
нейросекреторные клетки произошли не от нейрона как такового, а от их общего предшественника

  • пронейроцита беспозвоночных животных. Эволюция нейросекреторных клеток привела к формированию у них, как и у классических нейронов, способности к процессам синаптического возбуждения и торможения, генерации потенциала действия.

Для млекопитающих характерны мультиполярные нейросекреторные клетки нейронного типа, имеющие до 5 отростков. Такого типа клетки имеются у всех позвоночных, причем они в основном составляют нейросекреторные центры. Между соседними нейросекреторными клетками обнаружены электротонические щелевые контакты, которые, вероятно, обеспечивают синхронизацию работы одинаковых групп клеток в пределах центра.

Аксоны нейросекреторных клеток характеризуются многочисленными расширениями, которые возникают в связи с временным накоплением нейросекрета. Крупные и гигантские расширения называются «телами Геринга». В пределах мозга аксоны нейросекреторных клеток, как правило, лишены миелиновой оболочки. Аксоны нейросекреторных клеток обеспечивают контакты в пре-

12

делах нейросекреторных областей и связаны с различными отделами головного и спинного мозга. Одна из основных функций нейросекреторных клеток — это синтез белков и полипептидов и их дальнейшая секреция. В связи с этим в клетках подобного типа чрезвычайно развит белоксинтезирующий аппарат — это гранулярный эндоплазматический ретикулум и аппарат Гольджи. Сильно развит в нейросекреторных клетках и лизосомальный аппарат, особенно в периоды их интенсивной деятельности. Но самым существенным признаком активной деятельности нейросекреторной клетки является количество элементарных нейросекреторных гранул, видимых в электронном микроскопе.

Лекция 1. Основные понятия анатомии ЦНС. 1) Нервная система как часть живой системы. 2) Нейроны. 3) Глиальные клетки.  4) Строение нервов. 5) Типы нервной системы. 6) Основные отделы ЦНС.
Нервная система как часть живой системы.
Какими свойствами обладает нервная система в организме?
Организм —  самостоятельно существующая единица органического мира, представляющая собой саморегулирующуюся систему, реагирующую как единое целое на различные изменения внешней среды. Каждый живой организм отвечает на раздражения из окружающего его мира соответствующими реакциями, которые связывают организм с внешней средой. Протекающий в самом организме обмен веществ в свою очередь обусловливает ряд раздражений, на которые организм также реагирует. Связь между участком, на который падает раздражение, и реагирующим органом в высшем многоклеточном организме осуществляется нервной системой. Проникая своими разветвлениями во все органы и ткани, нервная система связывает все части организма в единое целое, осуществляя его объединение, интеграцию.
Все разнообразие значений нервной системы вытекает из её свойств.
1.    Возбудимость, раздражимость и проводимость характеризуются как функции времени, то есть это — процесс, возникающий от раздражения до проявления ответной деятельности органа.
2.    Согласно электрической теории распространения нервного импульса в нервном волокне, он распространяется за счет перехода локальных очагов возбуждения на соседние неактивные области нервного волокна или процесса распространяющейся деполяризации потенциала действия, представляющего подобие электрического тока.
3.     В синапсах протекает другой — химический процесс, при котором развитие волны возбуждения-поляризации принадлежит медиатору ацетилхолину, то есть химической реакции.
4.    Нервная система обладает свойством трансформации и генерации энергий внешней и внутренней среды и преобразования их в нервный процесс.
5.    К особенно важному свойству нервной системы относится свойство мозга хранить информацию в процессе не только онто-, но и филогенеза.
Что относится к нервной системе человека?
К нервной системе относятся спинной мозг, головной мозг и отходящие от них нервы. Нервная система связывает все системы организма в единое целое и обеспечивает связь организма с внешней средой. В основе объединяющей функции нервной системы лежат процессы регуляции и управления всеми подчиненными ей системами: двигательной системой, системой внутренних органов, органов внутренней секреции, сосудистой системой и т.д. Регуляция и управление функциями всех систем обеспечивается головным мозгом в соответствии с постоянно поступающей информацией из внутренней и внешней среды организма. Нервы являются теми проводниками, по которым идет передача информации без ее потери и передачи на рядом проходящие нервные стволы. Вся информация, поступающая в головной мозг, обрабатывается, чтобы «принять решение», сформировать программу действия и совершить наиболее соответствующий данным условиям приспособительный акт. Все высшие функции человека являются функциями нервной системы.
Нейроны.
Что такое нейрон?
Нейрон — это нервная клетка, являющаяся основным строительным блоком для нервной системы. Нейроны во многом схожи с другими клетками, но существует одно важное отличие нейрона от других клеток: нейроны специализируются на передаче информации по всему телу. Эти узкоспециализированные клетки способны на передачу информации и химическим, и электрическим путем. Существует также несколько различных видов нейронов, выполняющих различные функции в человеческом теле.
Сенсорные (чувствительные) нейроны доносят информацию, поступающую из клеток сенсорных рецепторов в мозг. Моторные (двигательные) нейроны передают команды от мозга к мускулам. Интернейроны (вставочные нейроны) способны сообщать информацию между разными нейронами в теле.
Нейроны являются возбудимыми клетками нервной системы. В отличие от глиальных клеток они способны возбуждаться (генерировать потенциалы действия) и проводить возбуждение. Нейроны высокоспециализированные клетки и в течение жизни не делятся.
В нейроне выделяют тело (сому) и отростки. Сома нейрона имеет ядро и клеточные органоиды. Основной функцией сомы является осуществление метаболизма клетки.
Какие функции у отростков нейрона?
Число отростков у нейронов различно, но по строению и выполняемой функции их делят на два типа. Одни — короткие, сильно ветвящиеся отростки, которые называются дендритами (от dendro — дерево, ветвь). Нервная клетка несет на себе от одного до множества дендритов. Основной функцией дендритов является сбор информации от множества других нейронов. Ребенок рождается с ограниченным числом дендритов (межнейронных связей), и увеличение массы мозга, которое происходит на этапах постнатального развития, реализуется за счет увеличения массы дендритов и глиальных элементов.
Другим типом отростков нервных клеток являются аксоны. Аксон в нейроне один и представляет собой более или менее длинный отросток, ветвящийся только на дальнем от сомы конце. Эти ветвления аксона называются аксонными терминалами (окончаниями). Место нейрона, от которого начинается аксон, имеет особое функциональное значение и называется аксонным холмиком. Здесь генерируется потенциал действия — специфический электрический ответ возбудившейся нервной клетки. Функцией же аксона является проведение нервного импульса к аксонным терминалям. По ходу аксона могут образовываться его ответвления — коллатерали. В месте отхождения коллатерали импульс «дублируется» и распространяется как по основному ходу аксона, так и по коллатерали.
Как классифицируются нейроны?
На основании числа и расположения отростков нейроны делятся на четыре группы:
1.    Униполярные нейроны – клетки с одним отростком — аксоном. Истинных униполярных клеток в теле человека нет, если не считать униполярной формы нейробластов до периода образования дендритов.
2.    Биполярные нейроны – клетки с двумя отростками — аксоном и дендритом. Истинные биполярные клетки в теле человека встречаются редко. Такую форму имеют часть клеток сетчатки глаза, спирального ганглия внутреннего уха и некоторые другие;
3.    Псевдоуниполярные нейроны – клетки, которые также имеют дендрит, идущий на периферию, заканчивающийся там чувствительными окончаниями (рецепторами), и аксон, несущий нервный импульс от тела клетки в ЦНС. Псевдоуниполярными они называются потому, что аксон и дендрит этих клеток начинаются от общего выроста тела, создающего впечатление одного отростка, с последующим Т-образным его делением.
4.    Мультиполярные (двигательные) нейроны. Из многих отростков такого нейрона один представлен аксоном, тогда как все остальные являются дендритами.
Глиальные клетки. 
Что такое глиальные клетки и какие функции они выполняют?
Помимо нейронов нервная ткань содержит клетки еще одного типа. Они выполняют опорную и защитную функции и называются глиальными клетками или глией. По численности их в 10 раз больше, чем нейронов, и они занимают половину объема ЦНС. Глиальные клетки окружают нервные клетки и играют вспомогательную роль. Глиальные клетки более многочисленные, чем нейроны: составляют по крайней мере половину объема ЦНС. Глия не только выполняет опорные функции, но и обеспечивает многообразные метаболические процессы в нервной ткани, участвует в формировании миелиновой оболочки и способствует восстановлению нервной ткани после травм и инфекций.
Глиальные клетки имеют общие функции и, частично, происхождение (исключение — микроглия). Они составляют специфическое микроокружение для нейронов, обеспечивая условия для генерации и передачи нервных импульсов, а также осуществляя часть метаболических процессов самого нейрона.
Итак, нейроглия — это особые клеточные популяции, которые находятся в центральной нервной системе и на периферии. Они поддерживают форму головного и спинного мозга, а также снабжают его питательными веществами. Известно, что в центральной нервной системе из-за наличия гематоэнцефалического барьера нет иммунных реакций. Однако при попадании чужеродного антигена в головной или спинной мозг, а также в ликвор глиальная клетка, редуцированный аналог макрофага периферических тканей, фагоцитирует его. Более того, именно отделение мозга от периферических тканей обеспечивает нейроглия. Таким образом нейроглия выполняет опорную, трофическую, секреторную, разграничительную и защитную функции.
На какие типы делятся клетки нейроглии?
Глиальные клетки делятся на два вида в зависимости от морфологии и происхождения. Выделяют клетки микроглии и макроглии. Первый вид клеток берет свое начало от мезодермального листка. Это мелкие клетки с многочисленными отростками, способные фагоцитировать твердые вещества. Макроглия — это производное эктодермы. Глиальная клетка макроглии делится на несколько видов в зависимости от морфологии. Выделяют эпендимальные и астроцитарные клетки, а также олигодендроциты. Такие виды клеточных популяций также делятся на несколько типов.
Эпендимальные глиальные клетки встречаются в специфических участках центральной нервной системы. Они образуют эндотелиальную выстилку мозговых желудочков и центрального спинномозгового канала. Свое начало в эмбриогенезе они берут из эктодермы, а потому представляют собой особый вид нейроэпителия. Он многослойный и выполняет ряд функций: 1) опорная: составляет механический каркас желудочков, который также поддерживается за счет гидростатического давления ликвора; 2) секреторная: выделяет в ликвор некоторые химические вещества; 3) разграничительная: отделяет мозговое вещество от ликвора.
Олигодендроциты – это типы глиальных клеток, которые окружают нейрон и его отростки. Они встречаются как в центральной нервной системе, так и рядом с периферическими смешанными и вегетативными нервами. Сами олигодендроциты представляют собой полигональные клетки, оснащенные 1-5 отростками. Ими они сцепляются между собой, изолируя нейрон от внутренней среды организма и обеспечивая условия для нервного проведения и генерации импульсов. Существует три вида олигодендроцитов, которые различаются по морфологии: 1) центральная клетка, расположенная около тела мозгового нейрона; 2) сателитная клетка, окружающая тело нейрона в периферическом ганглии; 3) шванновская клетка, охватывающая нейрональный отросток и образующая его миелиновую оболочку.
Олигодендроцитарные глиальные клетки встречаются как в головном и спинном мозге, так и в периферических нервах. Причем пока неизвестно, чем отличается сателитная клетка от центральной. Учитывая, что генетический материал у всех клеток организма, кроме половых, одинаков, то, вероятно, эти олигодендроциты могут взаимно заменять друг друга. Функции олигодендроцитов следующие: опорная; изолирующая; разделительная; трофическая.
Астроциты – это глиальные клетки мозга, которые составляют мозговое вещество. Они имеют звездчатую форму и отличаются небольшими размерами, хотя они больше, чем клетки микроглии. При этом существует всего два типа астроцитов: волокнистый и протоплазматический. Первый вид клеток расположен в белом и сером веществе головного мозга, хотя их значительно больше в белом.
Это значит, что они наиболее распространены в тех участках, где есть значительное число нейрональных миелинизированных отростков. Протоплазматические астроциты – это также глиальные клетки: встречаются в белом и сером веществе мозга, но их значительно больше в сером. Значит, их функцией является создание опоры для тел нейронов и структурная организация гематоэнцефалического барьера.
Микроглиальные клетки – это последний вид нейроглии. Однако в отличие от всех других клеток центральной нервной системы они имеют мезодермальное происхождение и представляют собой особые типы моноцитов. Их предшественниками являются стволовые кровяные клетки. Из-за особенностей строения нейронов и их отростков за иммунные реакции в центральной нервной системе отвечают как раз глиальные клетки. И их функции практически аналогичны таковым у тканевых макрофагов. Они ответственны за фагоцитоз и распознавание и презентацию антигена.
Микроглия содержит особые виды глиальных клеток, которые имеют рецепторы кластеров дифференцировки, что подтверждает их костномозговое происхождение и реализацию иммунных функций в ЦНС. Также они ответственны за развитие демиелинизирующих заболеваний, болезни Альцгеймера и синдрома Паркинсона. Однако сама клетка – это лишь способ реализации патологического процесса. Потому, вероятно, когда удастся найти механизм активации микроглии, будут пресечены процессы развития данных болезней.
Строение нервов.
Что такое нерв?
Нервные волокна (отростки нервных клеток, покрытые оболочками) выполняют специализированную функцию—проведение нервных импульсов. Нервные волокна формируют нерв или нервный ствол, состоящий из нервных волокон, заключенных в общую соединительнотканную оболочку. Нервные волокна, проводящие возбуждение от рецепторов в ЦНС, называются афферентными, а волокна, проводящие возбуждение от ЦНС к исполнительным органам, называются эфферентными. Нервы состоят из афферентных и эфферентных волокон.
Все нервные волокна по морфологическому признаку делятся на 2 основные группы: миелиновые и безмиелиновые. Они состоят из отростка нервной клетки, который лежит в центре волокна и называется осевым цилиндром, и оболочки, образованной шванновскими клетками. На поперечном срезе нерва видны сечения осевых цилиндров, нервных волокон и покрывающие их глиальные оболочки. Между волокнами в составе ствола располагаются тонкие прослойки соединительной ткани – эндоневрий, пучки нервных волокон покрыты периневрием, который состоит из слоев клеток и фибрилл. Наружная оболочка нерва – эпиневрий представляет собой соединительную волокнистую ткань, богатую жировыми клетками, макрофагами, фибробластами. В эпиневрий по всей длине нерва поступает большое количество анастомозирующих между собой кровеносных сосудов.
Как классифицируются нервы?
По строению нервы делятся на миелинизированные (мякотные) и немиелинизированные.
Периферический нерв состоит из нескольких пучков нервных волокон. Нервное волокно представляет собой длинный отросток нейрона — аксон, передающий нервные импульсы, покрытый оболочкой из шванновских клеток. Мякотные (миелинизированные) волокна, в отличие от безмякотных (немиелинизированных), окружены также и миелиновой оболочкой.
В состав миелиновых оболочек входят миелин и шванновские клетки нейроглии. Оболочки очень важны для передачи и увеличения скорости нервного импульса. Кровеносные и лимфатические сосуды находятся в этих оболочках. Миелин придаёт нервам белый цвет, безмиелиновые имеют серый цвет.
По направлению передачи информации (центр – периферия) нервы подразделяются на афферентные и эфферентные.
Эфферентные по физиологическому эффекту делятся на:
Двигательные (иннервируют мышцы).
Сосудодвигательные (иннервируют сосуды).
Секреторные (иннервируют железы). Нейроны обладают трофической функцией – обеспечивают метаболизм и сохранение структуры иннервируемой ткани. В свою очередь, нейрон, лишившийся объекта иннервации, также погибает.
По характеру влияния на эффекторный орган нейроны делятся на пусковые (переводят ткань из состояния физиологического покоя в состояние активности) и корригирующие (изменяют активность функционирующего органа).
В завершённом виде классификация нервных волокон выглядит так:
Класс А (миелинизированные волокна), афферентные, сенсорные.
Группа I. Волокна размером более 20 мкм в диаметре, со скоростью проведения импульса до 100 м/сек. Волокна этой группы несут импульсы от рецепторов мышц (мышечных веретен, интрафузальных мышечных волокон) и рецепторов сухожилий. 
Группа II. Волокна размером от 5 до 15 мкм в диаметре, со скоростью проведения импульсов от 20 до 90 м/сек. Эти волокна несут импульсы от механорецепторов и вторичных окончаний на мышечных веретенах интрафузальных мышечных волокон.
Группа III. Волокна размером от 1 до 7 мкм в диаметре, со скоростью проведения импульса от 12 до 30 м/сек. Функцией этих волокон является болевая рецепция, а также иннервация волосяных рецепторов и сосудов.
Класс А (миелинизированные волокна), эфферентные, двигательные.
Альфа-волокна. Более 17 мкм в диаметре, скорость проведения импульса от 50 до 100 м/сек. Они иннервируют экстрафузальные поперечнополосатые мышечные волокна, преимущественно стимулируя быстрые сокращения мышц (мышечные волокна 2-го типа) и крайне незначительно – медленные сокращения (мышц 1-го типа).
Бета-волокна. В отличие от альфа-волокон иннервируют мышечные волокна 1-го типа (медленные и тонические сокращения мышц) и частично интрафузальные волокна мышечного веретена.
Гамма-волокна. Размером 2-10 мкм в диаметре, скорость проведения импульса 10-45 м/сек, иннервирует только интрафузальные волокна, т.е. мышечное веретено, тем самым участвуя в спинальной саморегуляции мышечного тонуса и движений (кольцевая связь гамма-петли).
Класс В – миелинизированные преганглионарные вегетативные. Это небольшие нервные волокна, около 3 мкм в диаметре, со скоростью проведения импульса от 3 до 15 м/сек.
Класс С – немиелинизированные волокна, размерами от 0,2 до 1,5 мкм в диаметре, со скоростью проведения импульса от 0,3 до 1,6 м/сек. Этот класс волокон состоит из постганглионарных вегетативных и эфферентных волокон, преимущественно воспринимающих (проводящих) болевые импульсы
Какими свойствами обладает нервное волокно?
Нервное волокно обладает следующими физиологическими свойствами: возбудимостью, проводимостью, лабильностью.
Проведение возбуждения по нервным волокнам осуществляется по определенным законам.
Закон двустороннего проведения возбуждения по нервному волокну. Нервы обладают двусторонней проводимостью, т.е. возбуждение может распространяться в любом направлении от возбужденного участка (места его возникновения), т. е., центростремительно и центробежно. Это можно доказать, если на нервное волокно наложить регистрирующие электроды на некотором расстоянии друг от друга, а между ними нанести раздражение. Возбуждение зафиксируют электроды по обе стороны от места раздражения. Естественным направлением распространения возбуждения является: в афферентных проводниках – от рецептора к клетке, в эфферентных – от клетки к рабочему органу.
Закон анатомической и физиологической целостности нервного волокна. Проведение возбуждения по нервному волокну возможно лишь в том случае, если сохранена его анатомическая и физиологическая целостность, т.е. передача возбуждения возможна только по структурно и функционально не измененному, неповрежденному нерву (законы анатомической и физиологической целостности). Различные факторы, воздействующие на нервное волокно (наркотические вещества, охлаждение, перевязка и т. д.) приводят к нарушению физиологической целостности, т. е., к нарушению механизмов передачи возбуждения. Несмотря на сохранение его анатомической целостности проведение возбуждения в таких условиях нарушается.
Закон изолированного проведения возбуждения по нервному волокну. В составе нерва возбуждение по нервному волокну распространяется изолированно, без перехода на другие волокна, имеющиеся в составе нерва.  Изолированное проведение возбуждения обусловлено тем, что сопротивление жидкости, заполняющей межклеточные пространства, значительно ниже сопротивления мембраны нервных волокон. Поэтому основная часть тока, возникающего между возбужденным и невозбужденным участками нервного волокна, проходит по межклеточным щелям, не действуя на рядом расположенные нервные волокна. Изолированное проведение возбуждения имеет важное значение. Нерв содержит большое количество нервных волокон (чувствительных, двигательных, вегетативных), которые иннервируют различные по структуре и функциям эффекторы (клетки; ткани, органы). Если бы возбуждение внутри нерва распространялось с одного нервного волокна на другое, то нормальное функционирование органов было бы невозможно.
Возбуждение (потенциал действия) распространяется по нервному волокну без затухания. Периферический нерв практически неутомляем.
Типы нервной системы.
На какие типы делится нервная система?
Функция нервной системы сложна и многообразна. Нервная система осуществляет обмен информацией между организмом и внешней средой, регулирует и координирует функции всех органов, обеспечивает функциональное единство и целостность организма, определяет адаптивное поведение организма в окружающей среде. Условно нервная система делится по топографическому и функциональному принципам:
Топографический принцип: центральная и соматическая. Центральная – головной и спинной мозг, соматическая – черепно-мозговые и спинномозговые нервы.
Функциональный принцип: соматическая и вегетативная. Вегетативная представляет собой симпатическую часть и парасимпатическую.
Центральная нервная система (ЦНС) — основная часть нервной системы животных и человека, состоящая из скопления нейронов и их отростков. ЦНС состоит из головного и спинного мозга и их защитных оболочек.
Главная и специфическая функция ЦНС — осуществление простых и сложных рефлексов. У высших животных и человека низшие и средние отделы ЦНС — спинной мозг, продолговатый мозг, средний мозг, промежуточный мозг и мозжечок — регулируют деятельность отдельных органов и систем высокоразвитого организма, осуществляют связь и взаимодействие между ними, обеспечивают единство организма и целостность его деятельности. Высший отдел ЦНС — кора больших полушарий головного мозга и ближайшие подкорковые образования — в основном регулирует связь и взаимоотношения организма как единого целого с окружающей средой.
ЦНС образована из серого и белого вещества. Серое вещество составляют тела клеток, дендриты и немиелинизированные аксоны, организованные в комплексы, которые включают бесчисленное множество синапсов и служат центрами обработки информации, обеспечивая многие функции нервной системы. Белое вещество состоит из миелинизированных и немиелинизированных аксонов, выполняющих роль проводников, передающих импульсы из одного центра в другой. В состав серого и белого вещества входят также клетки глии. Нейроны ЦНС образуют множество цепей, которые выполняют две основные функции: обеспечивают рефлекторную деятельность, а также сложную обработку информации в высших мозговых центрах. Эти высшие центры, например, зрительная зона коры, получают входящую информацию, перерабатывают ее и передают ответный сигнал по аксонам.
Центральная нервная система связана со всеми органами и тканями организма через периферическую нервную систему, включающую у позвоночных черепные нервы, отходящие от головного мозга, спинномозговые — от спинного мозга, а также межпозвонковые нервные узлы и периферические отделы.
Периферическая нервная система осуществляет связь центральной нервной системы с кожей, мышцами и внутренними органами.
Периферические нервы, связывающие центральную нервную систему с кожей, мышцами, сухожилиями, относятся к соматической нервной системе. Нервы, связывающие центральную нервную систему с внутренними органами, кровеносными сосудами, железами, относятся к вегетативной нервной системе. В отличие от центральной нервной системы, периферическая нервная система не защищена костями или гематоэнцефалическим барьером, и может быть подвержена механическим повреждениям, на неё легче происходит действие токсинов. Выделяют два типа направлений нейронов: чувствительные сенсорные нейроны (то есть передающие импульсы в центральную нервную систему); чувствительные двигательные нейроны (то есть передающие импульсы из центральной нервной системы).
Периферическая нервная система функционально и структурно разделяется на соматическую нервную систему и вегетативную нервную систему. Соматическая нервная система отвечает за координацию движений тела, а также за получение внешних стимулов. Это – система, регулирующая сознательно контролируемую деятельность. Вегетативная нервная система, в свою очередь, делится на симпатическую нервную систему, парасимпатическую нервную систему и энтеральную нервную систему. Симпатическая нервная система отвечает за реагирование на надвигающуюся опасность или стресс и вместе с другими физиологическими изменениями отвечает за увеличение частоты пульса и кровяного давления, а также при появлении чувства волнения способствует повышению уровня адреналина. Парасимпатическая нервная система, напротив, становится заметной, когда человек отдыхает и чувствует себя расслабленно, она отвечает за такие вещи, как сужение зрачков, замедление сердцебиения, расширение кровеносных сосудов и стимуляцию работы пищеварительной и мочеполовой систем. Роль энтеральной нервной системы состоит в управлении всеми аспектами пищеварения, от пищевода до желудка, тонкого кишечника и прямой кишки.
Соматическая нервная система — часть нервной системы человека, представляющая собой совокупность афферентных (чувствительных) и эфферентных (двигательных) нервных волокон, иннервирующих мышцы, кожу, суставы.
Вегетативная нервная система — отдел нервной системы, регулирующий деятельность внутренних органов, желез внутренней и внешней секреции, кровеносных и лимфатических сосудов. Играет ведущую роль в поддержании постоянства внутренней среды организма и в приспособительных реакциях всех позвоночных.
Анатомически и функционально вегетативная нервная система подразделяется на симпатическую и парасимпатическую. Симпатические и парасимпатические центры находятся под контролем коры больших полушарий и гипоталамических центров.
В симпатическом и парасимпатическом отделах имеются центральная и периферическая части. Центральную часть образуют тела нейронов, лежащих в спинном и головном мозге. Эти скопления нервных клеток получили название вегетативных ядер. Отходящие от ядер волокна, вегетативные ганглии, лежащие за пределами центральной нервной системы, а также нервные сплетения в стенках внутренних органов образуют периферическую часть вегетативной нервной системы.
Симпатические ядра расположены в спинном мозге. Отходящие от него нервные волокна заканчиваются за пределами спинного мозга в симпатических узлах, от которых берут начало нервные волокна. Эти волокна подходят ко всем органам.
Парасимпатические ядра лежат в среднем и продолговатом мозге и в крестцовой части спинного мозга. Нервные волокна от ядер продолговатого мозга входят в состав блуждающего нерва. От ядер крестцовой части нервные волокна идут к кишечнику, органам выделения.
Основные отделы ЦНС.
Какие отделы включает в себя ЦНС?
Центральная нервная система включает в себя: — головной мозг, спинной мозг. Анатомически они расположены в черепе и позвоночнике. Костные ткани черепа и позвоночника обеспечивают защиту мозга от физических травм.
Спинной мозг представляет собой длинный столб нервной ткани, проходящий через спинной канал, от второго поясничного позвонка до продолговатого мозга. Он решает две основные задачи: 1) передает сенсорную информацию от периферийных рецепторов в головной мозг; 2) обеспечивает ответные реакции организма на внешние и внутренние сигналы через активацию мышечной системы. Спинной мозг образован 31 идентичным блоком — сегментами, соединенными с различными частями туловища. Каждый из сегментов состоит из серого и белого вещества. Белое вещество формирует восходящие, нисходящие и внутренние нервные пути. Восходящие передают информацию в головной мозг, нисходящие — из головного мозга различным частям организма, внутренние — от сегмента к сегменту.
Головной мозг состоит из трех основных структур: больших полушарий, мозжечка и ствола.
Большие полушария – самая крупная часть мозга – содержат высшие нервные центры, составляющие основу сознания, интеллекта, личности, речи, понимания. В каждом из больших полушарий выделяют следующие образования: лежащие в глубине обособленные скопления (ядра) серого вещества, которые содержат многие важные центры; расположенный над ними крупный массив белого вещества; покрывающий полушария снаружи толстый слой серого вещества с многочисленными извилинами, составляющий кору головного мозга.
Мозжечок тоже состоит из расположенного в глубине серого вещества, промежуточного массива белого вещества и наружного толстого слоя серого вещества, образующего множество извилин. Мозжечок обеспечивает главным образом координацию движений.
Ствол мозга образован массой серого и белого вещества, не разделенной на слои. Ствол тесно связан с большими полушариями, мозжечком и спинным мозгом и содержит многочисленные центры чувствительных и двигательных проводящих путей. Первые две пары черепно-мозговых нервов отходят от больших полушарий, остальные же десять пар – от ствола. Ствол регулирует такие жизненно важные функции, как дыхание и кровообращение.
Основные черты строения и функции ЦНС связана со всеми органами и тканями через периферическую нервную систему, которая у позвоночных включает черепно-мозговые нервы, отходящие от головного мозга, и спинномозговые нервы — от спинного мозга, межпозвонковые нервные узлы, а также периферический отдел вегетативной нервной системы — нервные узлы, с подходящими к ним (преганглионарными) и отходящими от них (постганглионарными) нервными волокнами.
Чувствительные, или афферентные, нервные приводящие волокна несут возбуждение в ЦНС от периферических рецепторов; по отводящим эфферентным (двигательным и вегетативным) нервным волокнам возбуждение из ЦНС направляется к клеткам исполнительных рабочих аппаратов (мышцы, железы, сосуды и т. д.). Во всех отделах ЦНС имеются афферентные нейроны, воспринимающие приходящие с периферии раздражения, и эфферентные нейроны, посылающие нервные импульсы на периферию к различным исполнительным эффекторным органам.
Афферентные и эфферентные клетки своими отростками могут контактировать между собой и составлять двухнейронную рефлекторную дугу, осуществляющую элементарные рефлексы (например, сухожильные рефлексы спинного мозга). Но, как правило, в рефлекторной дуге между афферентными и эфферентными нейронами расположены вставочные нервные клетки, или интернейроны. Связь между различными отделами ЦНС осуществляется также с помощью множества отростков афферентных, эфферентных и вставочных нейронов этих отделов, образующих внутрицентральные короткие и длинные проводящие пути.
                                      Рекомендуемая литература:
1.    А.Е. Хомутов, С.Н. Кульба «Анатомия центральной нервной системы». Ростов-на-Дону, «Феникс», 2008
2.    H. В. Воронова, Н. M. Климова, A. M. Менджерицкий «Анатомия центральной нервной системы». Москва «Аспект Пресс», 2005
3.    В.В. Жуков, Е.В. Пономарева «Анатомия нервной системы». Учебное пособие. Калининград, 1998

Нервная система состоит из нейронов (специфических клеток, имеющих отростки) и нейроглии (она заполняет пространство между нервными клетками в ЦНС). Главное отличие между ними заключается в направлении передачи нервного импульса. Дендриты – это принимающие ответвления, по ним сигнал идет к телу нейрона. Передающие клетки – аксоны – проводят сигнал от сомы к принимающим. Это могут быть не только отростки нейрона, но и мышцы.

дендриты это

Отличия аксонов и дендритов

Какова же разница между ними? Рассмотрим.

  1. Дендрит нейрона короче передающего отростка.
  2. Аксон всего один, принимающих ответвлений может быть много.
  3. Дендриты сильно ветвятся, а передающие отростки начинают разделяться ближе к концу, образуя синапс.
  4. Дендриты истончаются по мере удаления от тела нейрона, толщина аксонов практически неизменна по всей длине.
  5. Аксоны покрыты миелиновой оболочкой, состоящей из липидных и белковых клеток. Она выполняет роль изолятора и защищает отросток.

Поскольку нервный сигнал передается в виде электрического импульса, клеткам необходима изоляция. Её функции выполняет миелиновая оболочка. Она имеет мельчайшие разрывы, способствующие более быстрой передаче сигнала. Дендриты – это безоболочечные отростки.

Определение

Мозговое вещество – высокоорганизованная структура, образованная нервными клетками, от которых отходят аксоны. Из нервных клеток состоит мозговая ткань. Аксон в переводе с греческого означает «ось» – это такой отросток, элемент мозгового вещества, который обеспечивает взаимодействие между клетками разного типа (нейроны, клетки иннервируемых органов), что ассоциируется с тонким, четким управлением работой органов и систем. Функции ткани ЦНС:

  1. Воспринимает раздражения, преобразуя их в импульсы.
  2. Поддерживает передачу импульсов от управляющих отделов мозга к исполнительным органам.
  3. Формирует ответную реакцию на раздражающее воздействие.
  4. Обеспечивает взаимодействие в работе систем и органов, поддерживает интеграцию структурных единиц организма.
  5. Обеспечивает взаимосвязь организма с внешней средой.

Согласно определению в биологии, аксон (англ. axon) – удлиненный отросток, по которому идут импульсы от тела нейрона к другим нервным клеткам и структурным элементам всех тканей организма. Мозговая ткань в период внутриутробного развития образуется из нервной пластины. Края пластинки прогибаются, что приводит к формированию валиков и желобка. В результате смыкания краев валиков возникает нервная трубка – основа ЦНС.

Дифференциация клеток, образующих трубку, приводит к появлению нейробластов и спонгиобластов. Первые служат основой для формирования нейронов, вторые – для образования нейроглии. Нейроны (анат.) – основные структурные элементы мозгового вещества. Они характеризуются отсутствием функции деления, что приводит к постепенному уменьшению их численности. Тело нейрона состоит из ядра и цитоплазмы. В зависимости от типа нейронов меняется геометрическая форма тела, которая бывает круглая, овальная, пирамидальная и другая.

строение нейрона

Цитоскелет, состоящий из микротрубочек и нейрофибриллов, обеспечивает опорную и трофическую функцию. Цитоскелет поддерживает форму нейрона, обеспечивает транспорт веществ и органелл. От тела ответвляются отростки – единичный аксон и множественные дендриты. Аксон нейрона почти не ветвится, иногда образует коллатеральные (обходные) сегменты. Концевые сегменты (окончания) разветвляются, называются терминали.

Терминали взаимосвязаны с окончаниями других нейронов и с клетками, образующими паренхиму (ткань) рабочих органов – мышц, желез. Количество дендритов варьируется от 1 до нескольких. Тонкие ответвления дендритов оканчиваются небольшими шипами, где сосредоточены терминали аксональных отростков многих тысяч других клеток. Дендриты воспринимают раздражения или потенциалы действия от других клеток и передают их по волокнам к телу своего нейрона.

Рост аксона зависит от особенностей строения и жизнедеятельности нейрона, который поддерживает функцию питания отростка. К примеру, если перерезать аксональный ствол, сегмент, связанный с телом, остается жизнеспособным и продолжает деятельность, участок, утративший связь с телом, отмирает. Аксоны образуют нервы, что предполагает сложную структурно-морфологическую организацию ЦНС.

цнс человека

Синапс

Место, в котором происходит контакт между ответвлениями нейронов или между аксоном и принимающей клеткой (например, мышечной), называется синапсом. В нем может участвовать всего по одному ответвлению от каждой клетки, но чаще всего контакт происходит между несколькими отростками. Каждый вырост аксона может контактировать с отдельным дендритом.

дендрит нейрона

Сигнал в синапсе может передаваться двумя способами:

  1. Электрическим. Это происходит только в случае, когда ширина синаптической щели не превышает 2 нм. Благодаря такому маленькому разрыву импульс проходит через него, не задерживаясь.
  2. Химическим. Аксоны и дендриты вступают в контакт благодаря разнице потенциалов в мембране передающего отростка. С одной ее стороны частицы имеют положительный заряд, с другой – отрицательный. Это обусловлено разной концентрацией ионов калия и натрия. Первые находятся внутри мембраны, вторые – снаружи.

При прохождении заряда увеличивается проницаемость мембраны, и натрий входит в аксон, а калий выходит из него, восстанавливая потенциал.

Сразу после контакта отросток становится невосприимчивым к сигналам, через 1 мс способен к передаче сильных импульсов, через 10 мс возвращается в исходное состояние.

Дендриты – это принимающая сторона, передающая импульс от аксона телу нервной клетки.

Особенности, характерные для типичных дендритов и аксонов

⇐ ПредыдущаяСтр 3 из 14Следующая ⇒

Дендриты Аксоны
От тела нейрона отходит несколько дендритов У нейрона имеется только один аксон
Длина редко превышает 700 мкм Длина может достигать 1 м
По мере удаления от тела клетки диаметр быстро уменьшается Диаметр сохраняется на значительном расстоянии
Образовавшиеся в результате деления ветви локализуются возле тела Терминали располагаются далеко от тела клетки
Имеются шипики Шипики отсутствуют
Не содержат синаптических пузырьков Содержат в большом числе синаптические пузырьки
Содержат рибосомы Рибосомы могут обнаруживаться в незначительном числе
Лишены миелиновой оболочки Часто окружены миелиновой оболочкой

Терминали дендритов чувствительных нейронов образуют чувствительные окончания. Основной функцией дендритов является получение информации от других нейронов. Дендриты проводят информацию к телу клетки, а затем к аксонному холмику.

Аксон. Аксоны образуют нервные волокна, по которым передается информация от нейрона к нейрону или к эффекторному органу. Совокупность аксонов образует нервы.

Общепринято подразделение аксонов на три категории: А, В и С. Волокна группы А и В являются миелинизированными, а С – лишены миелиновой оболочки. Диаметр волокон группы А, которые составляют большинство коммуникаций центральной нервной системы, варьирует от 1 до 16 мкм, а скорость проведения импульсов равна их диаметру, умноженному на 6. Волокна типа А подразделяются на Аa, Аb, Аl, Аs. Волокна Аb, Аl, Аs имеют меньший диаметр, чем волокна Аa, меньшую скорость проведения и более длительный потенциал действия. Волокна Аb и Аs являются преимущественно чувствительными волокнами, которые проводят возбуждение от различных рецепторов в ЦНС. Волокна Аl – это волокна, которые проводят возбуждение от клеток спинного мозга к интрафузальным мышечным волокнам. В-волокна являются характерными для преганглионарных аксонов вегетативной нервной системы. Скорость проведения 3-18 м/с, диаметр 1-3 мкм, продолжительность потенциала действия 1-2 мс, нет фазы следовой деполяризации, а есть длительная фаза гиперполяризации (более 100 мс). Диаметр С-волокон от 0,3 до 1,3 мкм, и скорость проведения импульсов в них несколько меньше величины диаметра, умноженного на 2, и равняется 0,5-3 м/с. Длительность потенциала действия этих волокон составляет 2 мс, отрицательный следовой потенциал равняется 50-80 мс, а положительный следовой потенциал – 300-1000 мс. Большинство С-волокон являются постганглионарными волокнами вегетативной нервной системы. В миелинизированных аксонах скорость проведения импульсов выше, чем в немиелизированных.

Аксон содержит аксоплазму. У крупных нервных клеток ей принадлежит около 99% всей цитоплазмы нейрона. Цитоплазма аксонов содержит микротрубочки, нейрофиламенты, митохондрии, агранулярный эндоплазматический ретикулум, везикулы и мультивезикулярные тела. В разных частях аксона существенно меняются количественные отношения между этими элементами.

У аксонов, как миелинизированных, так и немиелизированных, есть оболочка – аксолемма.

В зоне синаптического контакта мембрана получает ряд дополнительных цитоплазматических соединений: плотные выступы, ленты, субсинаптическая сеть и др.

Начальный участок аксона (от его начала до того места, где наступает сужение до диаметра аксона) носит название аксонного холмика. От этого места и появления миелиновой оболочки простирается начальный сегмент аксона. В немиелинизированных волокнах эта часть волокна определяется с трудом, а некоторые авторы считают, что начальный сегмент присущ только тем аксонам, которые покрыты миелиновой оболочкой. Он отсутствует, например, у клеток Пуркинье в мозжечке.

В месте перехода аксонного холмика в начальный сегмент аксона под аксолеммой появляется характерный электронноплотный слой, состоящий из гранул и фибрилл, толщиной 15 нм. Этот слой не связан с плазматической мембраной, а отделен от нее промежутками до 8 нм.

В начальном сегменте по сравнению с телом клетки резко уменьшается количество рибосом. Остальные компоненты цитоплазмы начального сегмента – нейрофиламенты, митохондрии, везикулы – переходят из аксонного холмика сюда, не изменяясь ни по внешнему виду, ни по взаиморасположению. На начальном сегменте аксона описаны аксо-аксональные синапсы.

Часть аксона, покрытая миелиновой оболочкой, обладает только ей присущими функциональными свойствами, которые связаны с проведением нервных импульсов с большой скоростью и без декремента (затухания) на значительные расстояния. Миелин является продуктом жизнедеятельности нейроглии. Проксимальной границей у миелинизированного аксона служит начало миелиновой оболочки, а дистальной – утрата ее. Далее следуют более или менее длинные терминальные отделы аксона. В этой части аксона отсутствует гранулярный эндоплазматический ретикулум и очень редко встречаются рибосомы. Как в центральных отделах нервной системы, так и на периферии аксоны окружены отростками глиальных клеток.

Миелинизированная оболочка имеет сложное строение. Ее толщина варьирует от долей до 10 мкм и более. Каждая из концентрически расположенных пластинок состоит из двух наружных плотных слоев, образующих главную плотную линию, и двух светлых бимолекулярных слоев липидов, разделенных промежуточной осмиофильной линией. Промежуточная линия аксонов периферической нервной системы представляет собой соединение наружных поверхностей плазматических мембран шванновской клетки. Каждый аксон сопровождается большим числом шванновских клеток. Место, где шванновские клетки граничат между собой, лишено миелина и называется перехватом Ранвье. Между длиной межперехватного участка и скоростью проведения нервных импульсов есть прямая зависимость.

Перехваты Ранвье составляют сложную структуру миелинизированных волокон и играют важную функциональную роль в проведении нервного возбуждения.

Протяженность перехвата Ранвье миелинизированных аксонов периферических нервов находится в пределах 0,4-0,8 мкм, в центральной нервной системе перехват Ранвье достигает 14 мкм. Длина перехватов довольно легко изменяется под действием различных веществ. В области перехватов, помимо отсутствия миелиновой оболочки, наблюдаются значительные изменения структуры нервного волокна. Диаметр крупных аксонов, например, уменьшается наполовину, мелкие аксоны изменяются меньше. Аксолемма имеет обычно неправильные контуры, и под ней лежит слой электронноплотного вещества. В перехвате Ранвье могут быть синаптические контакты как с прилежащими к аксону дендритами (аксо-дендритические), так и с другими аксонами.

Коллатерали аксонов. С помощью коллатералей происходит распространение нервных импульсов на большее или меньшее число последующих нейронов.

Аксоны могут делиться дихотомически, как, например, у зернистых клеток мозжечка. Очень часто встречается магистральный тип ветвления аксонов (пирамидные клетки коры мозга, корзинчатые клетки мозжечка). Коллатерали пирамидных нейронов могут быть возвратными, косоидущими и горизонтальными. Горизонтальные ответвления пирамид простираются иногда на 1-2 мм, объединяя пирамидные и звездчатые нейроны своего слоя. От горизонтально распространяющегося (в поперечном направлении к длинной оси извилины мозга) аксона корзинчатой клетки образуются многочисленные коллатерали, которые заканчиваются сплетениями на телах крупных пирамидных клеток. Подобные аппараты, так же как и окончания на клетках Реншоу в спинном мозге, являются субстратом для осуществления процессов торможения.

Коллатерали аксонов могут служить источником образования замкнутых нейронных цепей. Так, в коре больших полушарий все пирамидные нейроны имеют коллатерали, которые принимают участие во внутрикорковых связях. За счет существования коллатералей обеспечивается в процессе ретроградной дегенерации сохранность нейрона в том случае, если повреждается основная ветвь его аксона.

Терминали аксонов. К терминалям относятся дистальные участки аксонов. Они лишены миелиновой оболочки. Протяженность терминалей значительно варьирует. На светооптическом уровне показано, что терминали могут быть либо одиночными и иметь форму булавы, сетевидной пластинки, колечка, либо множественными и походить на кисть, чашевидную, моховидную структуру. Размер всех этих образований изменяется от 0,5 до 5 мкм и более.

Тонкие разветвления аксонов в местах контакта с другими нервными элементами нередко имеют веретеновидные или бусинковидные расширения. Как показали электронно-микроскопические исследования, именно в этих участках имеются синаптические соединения. Одна и та же терминаль дает возможность одному аксону устанавливать контакт с множеством нейронов (например, параллельные волокна в коре головного мозга) (рис. 1.2).

Функции нервных волокон

Распространение возбуждения в нервных волокнах.Изменения мембранного потенциала, вызываемые электрическим током, подразделяются на пассивные и активные.

Пассивные, или электротонические, изменения мембранного потенциала определяются физическими (электрическими) параметрами как самой мембраны, так и всей клетки (волокна) в целом.

Пассивные сдвиги мембранного потенциала возникают при действии на возбудимые образования электрического тока любой силы, формы или направления. Однако если при гиперполяризующем (анодном) и слабом деполяризующем (катодном) токах пассивные изменения потенциала могут наблюдаться в чистом (неосложненном) виде, то при близких к порогу и сверхпороговых деполяризующих стимулах они сопровождаются активными сдвигами потенциала: локальным ответом и потенциалом действия, связанными с изменениями ионной проницаемости мембраны.

Пассивные свойства мембраны и всего волокна в целом в значительной мере определяют условия возникновения и распространения возбуждения в нервном волокне.

Исследования показывают, что в однородно поляризуемом, однородном участке нервного волокна изменения мембранного потенциала при приложении прямоугольного толчка гиперполяризующего или слабого деполяризующего тока нарастают по экспоненте:

,

где RC = τ

– постоянная времени мембраны, т.е. время, в течение которого потенциал нарастает до 63% от своей конечной величины. При выключении тока потенциал возвращается к исходному уровню по экспоненте с той же постоянной времени
τ
. Такие изменения мембранного потенциала принято называть пассивными или электротоническими, в отличие от активных, связанных с повышением или снижением ионных проводимостей мембраны.

Подобные изменения наблюдаются на сферических клетках (на соме). Описание цилиндрической клетки, в частности аксона, более сложно. В этом случае уже нельзя считать внутренний проводник эквипотенциальным по всей длине. Внешний проводник можно считать эквипотенциальным за счет увеличения объема внеклеточной жидкости. Потенциал на такой мембране зависит не только от времени включения тока, но и от расстояния х

по отношению к месту приложения тока:

,

где а

– радиус волокна,
R
– удельное сопротивление аксоплазмы,

и

– емкость и сопротивление на единицу площади мембраны. Левая часть уравнения описывает плотность тока через каждую точку мембраны, которая равна сумме плотностей емкостного ()и омического () токов, стоящих в правой части уравнения.

Через длительное время (намного большего постоянной времени t = RМ CМ

) после включения импульса емкость мембраны полностью зарядится и емкостный ток станет равным нулю. Уравнение примет вид:

.

Его решение:

,

где V0

– потенциал в начале кабеля (
х
= 0),
l
– постоянная длины волокна.

Постоянная длины характеризует крутизну затухания потенциала вдоль волокна. Чем больше l

, тем дальше по волокну проходит сигнал. Скорость электротонического распространения пропорциональна удвоенной величине константы длины волокна
l
и обратно пропорциональна постоянной времени
t = RМ CМ
. Величина
l
может быть выражена через сопротивление мембраны

, сопротивление внутренней среды – аксоплазмы
Ri
и диаметра волокна
d
:

.

Кабельные свойства нервных волокон оказывают существенное влияние не только на развитие электротонических потенциалов, но и на характер активных ответов – величину порога, амплитуду, крутизну нарастания и длительность потенциала действия.

В настоящее время можно считать строго доказанным, что проведение потенциала действия (ПД) вдоль нервного волокна осуществляется с помощью локальных токов, возникающих между возбужденным и покоящимся участками мембраны. Локальный ток изменяет величину мембранного потенциала покоя в покоящемся участке до критического уровня деполяризации, что и является причиной возникновения потенциала действия.

Многочисленными исследованиями было показано, что скорость проведения пропорциональна постоянной длины волокна l

и обратно пропорциональна постоянной времени мембраны
t
(Чайлохян Л.М., 1962). Поскольку в безмякотных нервных волокнах
l
пропорциональна квадратному корню из диаметра волокна

,

скорость проведения при прочих равных условиях также пропорциональна корню квадратному из диаметра волокна.

В миелинизированных нервных волокнах проведение происходит сальтаторно – от перехвата Ранвье к перехвату Ранвье. Длина межперехватного участка примерно пропорциональна диаметру волокна, поэтому скорость проведения в этих волокнах пропорциональна не корню квадратному из диаметра волокна, а просто его диаметру.

Принято считать, что скорость проведения зависит от величины так называемого фактора безопасности (гарантийности) Ф

, т.е. отношения амплитуды распространяющегося ПД к пороговому потенциалу. Пороговый потенциал – это та величина, на которую нужно изменить мембранный потенциал, чтобы достичь критического уровня деполяризации.

,

где Vs

– амплитуда ПД,
Vt
– пороговый потенциал.

При Ф = Vt

распространения возбуждения нет. Для аксона краба это отношение равно 7.

Было показано, что пороговый потенциал Vt

находится в тесной зависимости от чувствительности системы натриевой проницаемости мембраны к деполяризации. Чем выше эта чувствительность, т.е. чем на большую величину повышается
PNa
и, соответственно, натриевый входящий ток
INa
при данном сдвиге потенциала, тем ниже порог, и наоборот. Изменение состояния системы калиевой проницаемости на величину порогового потенциала практически не оказывает влияния. Точно так же очень мало влияет на пороговый потенциал проводимость токов «утечки». При постоянном потенциале покоя фактор безопасности должен возрастать при воздействиях на нервное волокно, которые повышают чувствительность натриевой системы к деполяризации, например, снижение концентрации ионов кальция в окружающей среде. Значительное снижение фактора безопасности вызывают агенты, усиливающие исходную инактивацию натриевой системы или уменьшающие натриевую проводимость, поскольку в этом случае амплитуда потенциала действия падает, а пороговый потенциал растет. Такие изменения проведения возбуждения наблюдал Тасаки (1957) и другие исследователи при воздействии на нервное волокно анестетиков и наркотиков в малых концентрациях, недостаточных для полного подавления потенциала действия.

Сложное влияние на фактор безопасности оказывает уровень потенциала покоя. Кратковременная подпороговая деполяризация мембраны, не изменяющая существенным образом критического потенциала и амплитуды потенциала действия, повышает фактор безопасности, так как Vt = Eo – Ek

. При сильной же деполяризации амплитуда спайка падает, критический потенциал растет, поэтому фактор безопасности уменьшается.

Наряду с фактором безопасности существенное влияние на скорость проведения возбуждения оказывает крутизна восходящей фазы распространяющегося потенциала действия. Крутизна этой фазы зависит как от пассивных, так и активных свойств мембраны.

Примерно 1/3 восходящей фазы распространяющегося ПД связана с пассивной деполяризацией мембраны нервного волокна током локальной цепи. Скорость же этой деполяризации при данной силе локального тока определяется постоянной времени мембраны t = RM CM

. Чем эта величина меньше, тем быстрее нарастает деполяризация и, следовательно, круче поднимается спайк. Инактивация натриевой системы, или снижение проницаемости для натрия (активные свойства мембраны), резко уменьшает крутизну восходящей фазы. Таким образом, при большинстве воздействий изменения скорости нарастания восходящей фазы ПД по своему направлению совпадают с изменениями фактора безопасности.

Согласно теории локальных токов, амплитуда распространяющегося потенциала действия Vs

, в отличие от мембранного спайка, зависит не только от ЭДС возбужденной мембраны
Е
, но и от соотношения входных сопротивлений возбужденного
R1
и невозбужденного (сопротивление нагрузки
R2
) участков волокна:

. (1)

Чем отношение выше, тем в большей мере амплитуда распространяющегося ПД приближается к величине Е

, тем, следовательно, выше фактор безопасности, и наоборот. Из чего вытекает, что снижение сопротивления мембраны (повышение ее ионной проводимости) при критической деполяризации не только ведет к возникновению спайка, но и способствует увеличению фактора безопасности, а значит, и скорости проведения.

Из формулы (1) ясно, что при проведении возбуждения по геометрически неоднородным возбудимым проводникам амплитуда распространяющегося спайка должна существенно зависеть от того, насколько близко находится возбужденный в данный момент участок волокна к месту его ветвления или расширения.

При расширении нервного волокна, например, в месте перехода его в тело клетки или в области ветвления аксона, суммарная площадь сечения волокон и общая площадь их мембраны увеличивается, а следовательно, R2

падает. Уменьшение
R2
снижает фактор безопасности и, соответственно, скорость проведения. При некоторых условиях уменьшение
R2
может привести к полному блокированию нервного импульса.

Расчеты показали, что потенциал действия легко проходит трехкратное расширение, с трудом пятикратное и полностью блокируется при шестикратном. Причиной развития блока является резкое снижение амплитуды распространяющегося ПД вблизи области расширения волокна.

Трофическая функция нервных волокон.Трофической функцией обладают афферентные и эфферентные волокна.

Афферентные нервы обладают двумя нейротрофическими, неимпульсными функциями. Можно различить прямое морфогенетическое и трофическое влияние на периферические органы и регуляторную функцию с обратной связью, зависящую, вероятно, от внутриаксональных центростремительных импульсов. Нейротрофическое морфогенетическое влияние доказано наличием: а) зависимости структуры вкусовых почек от вкусовых нервов; б) стимулирования регенерации конечности у амфибий чувствительными нервами посредством специфического, стимулирующего рост вещества немедиаторной природы; в) дифференцировки и поддержания рецепторов. После деафферентации в некоторых органах развиваются трофические нарушения. Первичный «трофический» нейрон для мышцы – это нейрон моторный. Нельзя забывать также, что во всех нервах проходят эфферентные адренергические волокна, вкоторых нейросекреты (катехоламины) транспортируются аксоплазматическим током к периферическим органам.

Аксональный транспорт.Описаны две системы аксонального транспорта – медленный, со скоростью 1-3 мм/день, и быстрый, со скоростью примерно 400 мм/день.

Аксональный транспорт поддерживает непрерывность аксона и синаптических мембран и восстанавливает белки, гликопротеины, ферменты и другие вещества, исчезающие в ходе локального расщепления, экзоцитоза в синаптическую щель и ретроградной миграции к нейрону. Все это происходит благодаря быстрому транспорту, на который не оказывают влияния процессы возбуждения. Транспорт продолжается после блокады потенциалов действия и не повышается при усиленной активности нерва. Аксональный транспорт осуществляется в обоих направлениях; центростремительный ток контролирует, по-видимому, синтез белков в нейроне и играет также роль «сигнала» для хроматолиза после аксотомии. Различные вещества, ферменты, передатчики и макромолекулы передвигаются в аксоне с разной скоростью.

Аксоплазматический транспорт можно зарегистрировать по накоплению веществ после нарушения непрерывности аксона и по наблюдению за продвижением меченых соединений после введения их в нейрон.

Белки, синтезируемые в теле клетки, синаптические медиаторные вещества и низкомолекулярные факторы спускаются по аксону к нервной терминали вместе с клеточными органеллами, в частности митохондриями. Для большинства веществ и органелл обнаружен ретроградный транспорт (по аксону к телу клетки): вирус полиомиелита, вирус герпеса, столбнячный токсин, а также ферменты – пероксидаза хрена, которая широко используется в нейроанатомии в качестве маркиратора. Ретроградный транспорт, видимо, является главным фактором регуляции синтеза белка в клетке. После перерезки аксона через несколько дней в соме начинается хроматолиз, что свидетельствует о нарушении синтеза белка. Быстрый аксонный транспорт зависит от достаточного снабжения метаболической энергии. Возможность транспорта создают микротрубочки диаметром 25 мкм, состоящие из белка тубулина, и некоторые нейрофибриллы, состоящие из белка актина, образующие транспортные нити. Транспортные нити скользят вдоль микротрубочек. При этом они взаимодействуют с выступами микротрубочек, происходит расщепление АТФ, которое и обеспечивает энергию для транспорта. Более медленно транспортируются крупные белки. Но считают, что сам транспортный механизм не является более медленным, однако вещества время от времени попадают в клеточные компартменты, которые не участвуют в транспорте. Медленный ток имеет, по-видимому, также отношение к аксональному росту. Аксоплазматический ток прекращается колхицином, что объясняется влиянием этого вещества на микротрубочки.

Физиология синапсов

Синапс (от греч. synapsis) обозначает соединение, связь – это специализированная зона контакта между нейронами или нейронами и другими возбудимыми образованиями, обеспечивающая передачу возбуждения с сохранением, изменением или исчезновением ее информационного значения. Данный термин был предложен Ч. Шеррингтоном (1897) для обозначения функционального контакта между нейронами. Справедливости ради нужно отметить, что еще в 60-х годах XIX столетия И.М. Сеченов подчеркивал, что вне межклеточной связи нельзя объяснить происхождение даже самых простых рефлексов.

Синапсы различают: 1) по их местоположению; 2) по способу передачи сигналов.

1) По местоположению выделяют синапсы центральные и периферические. Центральные синапсы – это синапсы, которые осуществляют контакт между нейронами в центральной нервной системе. К ним относятся аксо-аксональные синапсы, аксо-дендритические, аксо-соматические, дендро-дендритические (обнаружены гистологически; функциональное значение не вполне ясно). Центральные синапсы классифицируют также по знаку их действия – возбуждающие и тормозные. Кроме того, распространено деление синапсов по тому медиатору (передатчику), который осуществляет посредничество: адренергические синапсы, холинергические синапсы и др.

К периферическим синапсам относят нервно-мышечные, синапсы вегетативных ганглиев (синапсы, образованные преганглионарными и постганглионарными волокнами).

2) По способу передачи синапсы классифицируются как химические и электрические.

Для всех этих образований характерно наличие пресинаптической мембраны, синаптической щели (10-50 нм), постсинаптической мембраны. Пресинаптическая мембрана является мембраной пресинаптического окончания отростка нейрона (чаще всего аксона).

У человека и высших позвоночных животных наибольшее распространение получили химические синапсы. Химические синапсы в пресинаптическом окончании содержат везикулы с медиатором, химическим передатчиком. Ширина синаптической щели в среднем составляет 20 нм. На постсинаптической мембране содержатся рецепторы к данному медиатору, ферменты, разрушающие данный медиатор. Таким образом, постсинаптическая мембрана является рецепторной частью синапса, ею может быть специфически дифференцированный участок дендрита, тела нейрона и его аксона.

В электрическом синапсе не вырабатывается медиатор. Синаптическая щель несколько меньше, чем у химического синапса (2-4 нм). В синаптической щели между пре- и постсинаптической мембранами имеются белковые мостики-каналы шириной 1-2 нм, где движутся ионы и небольшие молекулы. Это способствует более низкому, чем у пресинаптической мембраны, сопротивлению постсинаптической мембраны. Поэтому возбуждение от пресинаптической мембраны к постсинаптической мембране в электрических синапсах передается электрическим путем, т.е. осуществляется эфаптическая передача. В отличие от химических синапсов, электрические синапсы отличаются большей скоростью проведения возбуждения, высокой надежностью передачи, возможностью двустороннего проведения.

Электрические синапсы обнаружены у крыс в вестибулярном ядре продолговатого мозга, в структурах дыхательного центра продолговатого мозга (при этом обсуждается их роль в механизмах автоматического ритмогенеза дыхания); у кошки электрические синапсы обнаружены между нейронами нижних олив, в структурах таламуса, между фоторецепторами сетчатки и горизонтальными клетками у рыб и др.

Но все-таки наибольшее распространение в процессе эволюции получили химические синапсы. Это обусловлено рядом свойств этих образований, которые имеют большое значение в организации деятельности нервной системы (рис. 1.4).

Рис. 1.4.

Синапс (рисунок взят из книги: Мозг / под ред. П.В. Симонова. М.: Мир, 1984)

⇐ Предыдущая3Следующая ⇒

Рекомендуемые страницы:

Функционирование нервной системы

Нормальное функционирование нервной системы зависит от передачи импульса и химических процессов в синапсе. Не менее важную роль играет создание нервных связей. Способность к обучению присутствует у людей именно благодаря возможности организма формировать новые соединения между нейронами.

аксоны и дендриты

Любое новое действие на стадии изучения требует постоянного контроля со стороны мозга. По мере его освоения образуются новые нейронные связи, со временем действие начинает выполняться автоматически (например, умение ходить).

Дендриты – это передающие волокна, составляющие примерно треть всей нервной ткани организма. Благодаря их взаимодействию с аксонами люди имеют возможность обучаться.

Аксон – это волокнистая ось, отходящая от тела нейрона, покрытая миелиновым слоем, обеспечивающая связь с другими нейронами и клетками рабочих органов. Представляет собой удлиненный осевой отросток, по которому передаются потенциалы действия (возбуждения), что делает его важнейшим структурным элементом ЦНС.

аксон

Определение

Мозговое вещество – высокоорганизованная структура, образованная нервными клетками, от которых отходят аксоны. Из нервных клеток состоит мозговая ткань. Аксон в переводе с греческого означает «ось» – это такой отросток, элемент мозгового вещества, который обеспечивает взаимодействие между клетками разного типа (нейроны, клетки иннервируемых органов), что ассоциируется с тонким, четким управлением работой органов и систем. Функции ткани ЦНС:

  1. Воспринимает раздражения, преобразуя их в импульсы.
  2. Поддерживает передачу импульсов от управляющих отделов мозга к исполнительным органам.
  3. Формирует ответную реакцию на раздражающее воздействие.
  4. Обеспечивает взаимодействие в работе систем и органов, поддерживает интеграцию структурных единиц организма.
  5. Обеспечивает взаимосвязь организма с внешней средой.

Согласно определению в биологии, аксон (англ. axon) – удлиненный отросток, по которому идут импульсы от тела нейрона к другим нервным клеткам и структурным элементам всех тканей организма. Мозговая ткань в период внутриутробного развития образуется из нервной пластины. Края пластинки прогибаются, что приводит к формированию валиков и желобка. В результате смыкания краев валиков возникает нервная трубка – основа ЦНС.

Дифференциация клеток, образующих трубку, приводит к появлению нейробластов и спонгиобластов. Первые служат основой для формирования нейронов, вторые – для образования нейроглии. Нейроны (анат.) – основные структурные элементы мозгового вещества. Они характеризуются отсутствием функции деления, что приводит к постепенному уменьшению их численности. Тело нейрона состоит из ядра и цитоплазмы. В зависимости от типа нейронов меняется геометрическая форма тела, которая бывает круглая, овальная, пирамидальная и другая.

строение нейрона

Цитоскелет, состоящий из микротрубочек и нейрофибриллов, обеспечивает опорную и трофическую функцию. Цитоскелет поддерживает форму нейрона, обеспечивает транспорт веществ и органелл. От тела ответвляются отростки – единичный аксон и множественные дендриты. Аксон нейрона почти не ветвится, иногда образует коллатеральные (обходные) сегменты. Концевые сегменты (окончания) разветвляются, называются терминали.

Терминали взаимосвязаны с окончаниями других нейронов и с клетками, образующими паренхиму (ткань) рабочих органов – мышц, желез. Количество дендритов варьируется от 1 до нескольких. Тонкие ответвления дендритов оканчиваются небольшими шипами, где сосредоточены терминали аксональных отростков многих тысяч других клеток. Дендриты воспринимают раздражения или потенциалы действия от других клеток и передают их по волокнам к телу своего нейрона.

Рост аксона зависит от особенностей строения и жизнедеятельности нейрона, который поддерживает функцию питания отростка. К примеру, если перерезать аксональный ствол, сегмент, связанный с телом, остается жизнеспособным и продолжает деятельность, участок, утративший связь с телом, отмирает. Аксоны образуют нервы, что предполагает сложную структурно-морфологическую организацию ЦНС.

цнс человека

Строение

Аксон – это длинный отросток нейрона, который обеспечивает взаимодействие между нервными клетками. Согласно анатомии, аксон ответвляется от холмика, находящегося на теле. Холмик аксона представляет собой структуру, где постсинаптический потенциал преобразуется в биоэлектрический сигнал. Чтобы в холмике происходила генерация биоэлектрических сигналов, необходима согласованная деятельность каналов –натриевых, кальциевых, нескольких типов калиевых.

Длина аксона у человека существенно варьируется в зависимости от вида нейрона, от которого отходит аксональная ось. Минимальная длина – около 1 миллиметра, максимальная – около 1,5 метров. Длина более 1 метра наблюдается в случаях, когда отросток отходит от спинного мозга в область конечностей. Диаметр аксональной оси также неодинаковый у разных типов клеток, равен около 1-20 микрон. Импульсы проходят быстрее по аксональным осям большего диаметра.

Размеры аксонального отростка нередко достигают 99% от общего объема нервной клетки, в структуру которой он входит. Аксон состоит из протоплазмы (аксоплазмы), где находятся тончайшие волокна, белковые нити – нейрофибриллы, из чего образован ствол аксонального ответвления. Согласно одной из теорий, нейрофибриллы – проводники питательных веществ. Аксональная протоплазма также содержит митохондрии и микротрубочки, которые представляют собой самые крупные элементы цитоскелета.

Диаметр микротрубочек составляет около 24 нанометров. Они обеспечивают внутриклеточный транспорт веществ, в том числе поддерживают трофику аксональных отростков. Тело (перикарион) – источник протеинов и нейромедиаторов, распространяющихся по аксональной оси посредством микротрубочек, которые у аксона имеют направленную полярную ориентацию (в отличие от микротрубочек дендритов).

Положительно заряженные концы микротрубочек направлены к сегменту терминали, отрицательно заряженные концы – к телу. Строение аксона предполагает наличие оболочки. Аксон покрыт глиальным (миелиновым) слоем по всей длине, чем защищен от разрушающих внешних воздействий. Миелиновый слой в аксональных отростках периферического отдела сформирован клетками Шванна.

Миелиновая оболочка, покрывающая нервную ось, обеспечивает ее механическую прочность, электрохимическую изоляцию, трофику (питание). Миелиновый слой ускоряет проведение биоэлектрических сигналов. Нервы – пучки объединенных аксональных отростков, которые покрыты оболочкой из соединительной ткани и снабжены кровеносными сосудами.

 Функции

Основная задача нейронов – переработка данных. С их помощью осуществляется получение, обработка, передача информации отделам нервной и других систем организма.

Если дендриты проводят сигналы по направлению к телу нервной клетки (перикариону), то аксональный отросток передает импульсы от перикариона к другим клеткам.

Основная функция аксонов – проведение импульсов в пределах нейрональной сети и к исполнительным органам. Аксональные ответвления относятся к первичным проводниковым путям в нервной системе. Вспомогательная функция – транспорт веществ. При помощи аксонального транспорта осуществляется движение белков, синтезированных в теле, нейромедиаторов, органелл. Многие вещества способны двигаться в обоих направлениях.

аксональный транспорт

В периферических сегментах аксона в него могут проникать вирусы и токсичные вещества, которые перемещаясь к телу нервной клетки, повреждают ее. Аксональный транспорт зависит от количества энергии АТФ. Если энергетический уровень АТФ понижается больше, чем в 2 раза, происходит блокировка аксонального транспорта.

Функции аксона заключаются в передаче импульсов. При взаимодействии аксона с телом другого нейрона образуется аксосоматический контакт. Если аксон взаимодействует с дендритами других клеток возникает аксодендритический контакт. Взаимодействие с аксоном другой клетки приводит к образованию аксо-аксонального контакта, который редко происходит в нервной системе, поддерживает тормозные рефлекторные реакции.

Особенности регенерации нервной ткани

Нервные клетки почти полностью лишены способности к регенерации. Однако нервные клетки способны восстанавливать поврежденные или утраченные ответвления. Процесс регенерации аксона возможен, если тело сохраняет жизнеспособность, и на пути роста аксонального отростка отсутствуют препятствия. В ходе процесса регенерации отросток вновь прорастает к органу-мишени.

Восстановление нервной проводимости в мышцах с нарушенной иннервацией – один из критериев успешного лечения невропатий разного генеза. При невропатиях травматического генеза восстановление функций мышц происходит за счет регенерации ствола прерванного аксона и ремиелинизации отростка (восстановление миелиновой оболочки). Периферический отдел нервной системы обладает более высоким потенциалом регенерационных возможностей в сравнении с центральным отделом.

Восстановление иннервации в мышечной или кожной ткани происходит благодаря сохранившимся аксонам, которые начинают ускоренно разрастаться и ветвиться. Процесс ветвления аксонов в зоне перехватов Ранвье (периодические разрывы миелинового слоя) получил название «спрутинг». В результате происходит частичное или полное возобновление первичной иннервации.

синаптический спрутинг

В ходе экспериментов установлено, что близлежащие интактные (не вовлеченные в патологический процесс) аксоны выпускают нервные волокна, которые иннервируют участок мускулатуры или кожных покровов с нарушенной проводимостью нервных импульсов. Различают виды спрутинга – коллатеральный (обходной) и регенераторный (терминальный).

Регенераторный спрутинг начинается после устранения в нейронах ретроградных изменений, обусловленных аксонотомией (повреждением, рассечением нервной оси). Это связано с потребностью в продукции аппарата ядра нервной клетки, производящего протеины. Материал, необходимый для регенераторного спрутинга, продуцируется в теле и транспортируется по микротрубочкам по всей длине оси. Параллельно происходит процесс ремиелинизации осевого ствола.

Аксон – удлиненный отросток нервной клетки, обеспечивающий взаимодействие между структурными элементами мозговой ткани и связь ЦНС с исполнительными органами.

Просмотров: 2 340

Понравилась статья? Поделить с друзьями:
  • Побелка для потолка купить леруа мерлен
  • По какому адресу находится магазин леруа мерлен
  • Побелка для печи леруа мерлен
  • По для зте аксон 7
  • Побелка для дерева купить в леруа мерлен