Постоянная длины аксона

6.6.1. Быстрые ВПСП

Ацетилхолиновые (АХ) ВПСП вызываются активацией íèêî-

тинового АХ-рецептора, который открывает канал для катионов Na+, K+ è Ca2+. Потенциал реверсии этого тока около –5 мВ. Эти ВПСП регистрируются в нейронах ЦНС, спинном мозге (в клетках Реншоу), вегетативной нервной системе (в постганглионарных нейронах), ске-

летных мышцах.

Глютаматные ВПСП вызываются активацией трех типов глютаматных рецепторов, имеющих свои специфические агонисты: (1) AMPA,

(2)каиновая кислота и (3) NMDA.

AMPA- и каиновые рецепторы открывают каналы для катионов

Na+, K+ и иногда Ca2+. Потенциал реверсии этого тока около –0 мВ. При ПП (-75 мВ) NMDA-рецептор блокирован ионами Mg2+; ïðè

деполяризации блок снимается, и через канал течет Na+/K+/Ca2+-ток, вызывающий продолжительную деполяризацию. Активация NMDAрецептора может вызвать продолжительный ток, лежащий в основе долговременной потенциации.

6.6.2. Быстрые ТПСП

ÃÀÌÊ-ТПСП вызываются активацией ÃÀÌÊA-рецепторов, которые открывают канал для Cl. Потенциал реверсии Cl-тока составляет около –75 мВ. Cl-ток обеспечивает быстрое торможение, например, пирамидных клеток коры и гиппокампа, вызываемое тормозными ин-

тернейронами через коллатеральные тормозные пути.

ÃÀÌÊAè ÃÀÌÊÑрецепторы управляют Cl-проводимостью в дендритах колбочковых и палочковых биполяров сетчатки позвоночных,

соответственно.

Глициновые ТПСП вызываются активацией глициновых рецепторов, которые так же, как ÃÀÌÊÀ(Ñ)-рецепторы, открывают канал для Cl.

6.6.3. Медленные тормозные эффекты

Увеличение Ê+-проводимости обеспечивается действием многих медиаторов, например, ацетилхолина, норадреналина, серотонина, ГАМК, дофамина, аденозина, соматостатина, энкефалинов. Пирамид-

ные клетки гиппокампа отвечают на серотонин, ГАМК (при участии метаботропных ÃÀÌÊÂрецепторов) и аденозин увеличением Ê+-ïðî-

водимости. Функциональное значение увеличения К+-проводимости состоит в торможении, в результате которого вероятность генерации ПД в нейроне уменьшается.

150

Уменьшение Ca2+-проводимости. АХ, норадреналин, серотонин и ГАМК могут уменьшать Ca2+-ток в пресинаптических мембранах. Уменьшение этого тока рассматривается как отрицательная обратная связь, которая регулирует уровень выделившегося в синаптическую щель медиатора. Поскольку выделение медиатора обеспечивается входом Ca2+ в аксонную терминаль, уменьшение входящего Ca2+-тока уменьшает количество выделившегося медиатора.

6.6.4.Медленные возбудительные эффекты (уменьшение Ê+-проводимости)

Âмембранах нейронов обнаружены потенциал-зависимые К+-òîêè

(параграф 6.8.10), которые блокируются рядом медиаторов. Уменьшение IAHP +-ток следовой гиперполяризации) показано

при действии ряда медиаторов — норадреналина, ацетилхолина, серотонина, гистамина, глютамата. Этот ток регулируется через систему вторичных посредников при участии цАМФ и обеспечивает адаптацию частоты спайковых разрядов, т.е. постепенное ее уменьшение до устранения ПД. При уменьшении IAHP адаптация устраняется (ослабевает), что приводит к продолжительной импульсации нейронов в течение всего времени действия стимула. Функциональное значение этого тока состоит в увеличении отношения «сигнал-шум» в ответе нейрона на

стимул.

Уменьшение IÌ (мускариновый К+-ток) обеспечивается мускариновыми АХ-рецепторами. Этот ток так же, как и IAHP , участвует в адаптации спайковых разрядов, активируется при деполяризации выше

–65 мВ и, в отличие от IAHP , не проявляется при ПП. IÌ уменьшается при активации различных рецепторов, включая серотонинэргические,

глутаматэргические, а также некоторые пептидные рецепторы.

6.7. Проведение локальных потенциалов

Пассивные электрические свойства нейронов (сопротивление и емкость мембраны, а также сопротивление цитоплазмы) играют важную роль в распространении электрических потенциалов по нейронным сетям. В периферических рецепторах потенциалы возникают при действии раздражителей различной физической природы (рецепторные потенциалы), в постсинаптических мембранах потенциалы возникают в результате ионной проводимости при синаптической передаче (постсинаптические потенциалы). Амплитуда таких потенциалов градуально изменяется в зависимости от амплитуды токов, протекающих

151

через мембраны периферических рецепторов и нейронов. В органах чувств через градуальные потенциалы происходит генерация импульса в ответ на сенсорный стимул; в аксоне они способствуют распространению нервного импульса; в постсинаптических нейронах такие потенциалы возникают на многочисленных синаптических входах и суммируются, определяя тем самым вероятность генерации ПД в нейроне.

В данном разделе рассмотрено распространение потенциалов по нервным волокнам с постоянным диаметром, т.е. по цилиндрическим проводникам, и в условиях, когда в мембранах не активируются потен- циал-зависимые каналы, изменяющие сопротивление мембраны.

6.7.1. Кабельные свойства нервных и мышечных волокон

Нервное волокно состоит из тех же компонентов, что и обычный электрический кабель. Роль проводящей среды в нервном волокне выполняет раствор солей, обладающий плохой проводимостью в отличие от металлических проводников. Мембрана клетки является изолятором, но из-за малой толщины обладает высокой емкостью. Из-за таких электрических особенностей потенциал, приложенный к нервному волокну, распространяется только на незначительное расстояние. С некоторыми упрощениями продольное распространение тока по волокну подчиняется закону Ома, согласно которому ток i, проходя через сопротивление r, создает напряжение v = ir.

6.7.1.1. Входное сопротивление и постоянная длины

Прямое электрическое раздражение волокна вызывает потенциал, который пассивно распространяется по волокну, как по кабелю. По мере удаления от места возникновения амплитуда потенциала падает по экспоненциальному закону (рис. 6.14). Эквивалентная электрическая схема мембраны на рисунке 6.15 объясняет падение амплитуды потенциала. Формально мембрана состоит из дискретных контуров cm— rm и дискретных продольных сопротивлений ri. Сопротивление мембраны rm представляет собой сопротивление стенки цилиндра, а продольное сопротивление ri соответствует внутреннему сопротивлению участка аксоплазмы между цилиндрами.

По мере увеличения продольного сопротивления (в результате последовательной суммации ri) ток уменьшается, так как при последовательном соединении сопротивления складываются, и по закону Ома ток будет уменьшаться (I = U/R). Поскольку все сопротивления rm в контуре одинаковы, потенциалы на них будут пропорционально умень-

152

шаться, так как через них проходит уменьшающийся ток. В результате трансмембранная разность потенциалов уменьшается по мере удаления от источника.

Ðèñ. 6.14. (А) Пассивное распространение возбуждения по аксону кальмара. Участок волокна блокировали локальным охлаждением, чтобы предотвратить генерацию ПД. Потенциал преодолевает блокированный участок, существенно уменьшаясь по амплитуде. При распространении далее по волокну амплитуда потенциала градуально снижается. (Б) График зависимости амплитуды потенциала от расстояния от блокированного участка.

153

Ðèñ. 6.15. Эквивалентная электрическая схема мембраны. Электрические характеристики локального участка волокна: ri — внутреннее продольное сопротивление, rm — поперечное сопротивление, cm — емкость мембраны.

Падение амплитуды потенциала носит экспоненциальный характер, так что потенциал (Vx) при данном значении расстояния õ равен:

Vx = V0e-x/λ

Максимальный потенциал V0 определяется величиной стимулирующего тока. Уменьшение потенциала определяется константой λ, называемой постоянной длины волокна. λ — это расстояние, на котором потенциал снижается в å раз, т.е. до 37% от максимального значения.

6.7.1.2. Сопротивление мембраны и продольное сопротивление

Постоянная длины волокна λ зависит как от rm , òàê è îò ri :

λ = (rm/ri)½

Исходя из формулы, λ возрастает с увеличением сопротивления мембраны, препятствующего утечке тока во внеклеточное пространство, и, напротив, снижается с увеличением внутреннего сопротивления, которое затрудняет продольное протекание тока по аксоплазме.

Еще одна важная кабельная характеристика проводника — входное сопротивление мембраны — также зависит от обоих параметров:

rinput = 1/2(rm/ri)1/2

Коэффициент 1/2 в формуле объясняется тем, что аксон простирается в двух направлениях от места инъекции тока и каждая его половина обладает своими сопротивлениями. Измерив в эксперименте rinput è λ, можно рассчитать rm è ri.

154

6.7.1.3. Удельное сопротивление

Рассчитанные значения rm è ri, характеризуют сопротивление модельного цилиндрического сегмента аксона длиной 1 см. Однако эти характеристики не предоставляют точной информации о сопротивлении мембраны и аксоплазмы, поскольку последние зависят от размера волокна. Сопротивление мембраны нервного волокна обратно зависит от общего числа ионных каналов, которое определяется их плотностью и площадью поверхности сегмента аксона.

Чтобы сопоставить между собой мембраны разных волокон, нужно знать величину удельного сопротивления Rm, которое отражает сопротивление мембраны площадью 1 см2 и измеряется в Ом см2. Отрезок аксона длиной 1 см и радиусом α обладает площадью поверхности 2πα ñì2. Сопротивление мембраны rm такого отрезка составляет Rm/2πα, откуда Rm=2πα rm.

В большинстве типов нейронов Rm определяется главным образом К+— è Cl-проводимостями мембраны в покое. Среднее значение Rm, аксона омара составляет около 2000 Ом см2. Значения Rm, полученные на других объектах, варьировали в диапазоне от 1000 Ом см2 äî 50000 Îì ñì2 в зависимости от плотности ионных каналов.

Удельным сопротивлением аксоплазмы Ri считают внутреннее продольное сопротивление сегмента аксона длиной 1 см и площадью сече- ния 1 см2.

Поскольку с увеличением площади сечения цилиндра его продольное сопротивление уменьшается, то ri = Ri/πα2, откуда Ri = πα2ri.

Величина Ri измеряется в Ом см, и ее значение для аксона кальмара составляет около 30 Ом см. Ri обратно зависит от концентрации ионов в аксоплазме. У животных с более низкой ионной концентрацией в аксонах Ri составляет около 125 Ом см (у млекопитающих) и около 250 Ом см (у земноводных).

6.7.1.4. Влияние диаметра кабеля на его характеристики

На основе уравнений, приведенных выше, можно определить входное сопротивление волокна как:

rinput = 1/2( RmRi /2π2α3)1/2

Следовательно, входное сопротивление волокна снижается как 3/2 степень его радиуса.

155

Так же постоянная длины волокна λ определяется соотношением его поперечных и продольных удельных сопротивлений (Rm è Ri) и его радиусом α:

λ = (αRm/2Ri)1/2

Таким образом, λ возрастает с увеличением радиуса. Измеряя сопротивления и радиусы разных волокон, можно сопоставить их кабельные свойства. Так, значения постоянной длины волокна аксона кальмара (диаметром до 1 мм), мышечного волокна лягушки (диаметром 50 мкм) и нервного волокна млекопитающих (диаметром 1 мкм) составляли, соответственно, 13, 1,4 и 0,3 мм.

Итак, кабельные свойства проводника rinput и λ определяют амплитуду сигнала, генерируемого нервным волокном, и его декремент с расстоянием. Например, при равных условиях синаптического воздействия величи-

на ВПСП в тонком дендрите (с более высоким rinput) будет больше, чем в толстом. С другой стороны, в толстом дендрите из-за большего значения λ

потенциал будет меньше затухать с расстоянием, чем в тонком.

6.7.1.5. Постоянная времени

Мембрана обладает свойством емкости, накапливая заряд на своей внешней и внутренней поверхности. Как у конденсатора, два слоя жидкости по обе стороны мембраны являются обкладками, а сама мембрана представляет собой изолирующую прослойку. При толщине мембраны 5 нм она способна накапливать достаточно большой заряд. Обычно емкость мембраны нервных клеток составляет 1 мкФ/см2. Емкость мембраны приводит к тому, что фаза роста амплитуды потенциала, возникающего на мембране в результате приложения к ней тока, развивается по экспоненте в соответствии с уравнением:

Vt = V0(1-e-t/τ),

ãäå t время от начала импульса, Vt — амплитуда потенциала в момент времени t, V0 — максимальная амплитуда потенциала, τ постоянная времени, равная произведению удельного сопротивления и удельной емкости мембраны (RmCm). Постоянная времени отражает время, за которое потенциал достигает 63% (1–1/е) от максимального значения амплитуды. Спад потенциала после выключения также происходит по экспоненте с той же постоянной времени.

Постоянная времени мембраны не зависит от размера клетки или волокна. Увеличение радиуса (и площади поверхности мембраны) приводит не только к увеличению удельной емкости, но и к

156

снижению удельного сопротивления мембраны. При такой обратной зависимости этих параметров от размера волокна τ, как их произведение, (RmCm) не меняется. Постоянная времени, наряду с входным сопротивлением и постоянной длины, является параметрам, от которого зависят свойства аксона как проводника. Диапазон значений постоянной времени в различных типах нервных и мышечных клеток составляет от 1 до 20 мс.

Емкость мембраны приводит к замедлению поляризации мембраны в результате действия на нее тока. Поскольку при параллельном соединении мембранных модулей их суммарная емкость увеличивается, то по мере удаления от места раздражения время заряда емкости также увеличивается. Поэтому чем дальше от места раздражения развивается потенциал, тем τ больше, и фазы роста и спада потенциалов замедляются.

Еще одно существенное влияние мембранной емкости на потенциалы заключается в том, что кратковременные токи, активирующие мембрану, распространяются на более короткие расстояния, чем длительные. В случае продолжительного сигнала потенциал достигает своего максимального значения и емкость заряжается полностью. В результате пространственное распределение потенциала определяется только сопротивлениями мембраны и цитоплазмы (Vx = V0e-x/λ). При действии коротких сигналов (например, синаптический потенциал) ток прекращается еще до того, как емкость успевает полностью зарядиться. Это выражается в уменьшении расстояния, на которое потенциал распространяется вдоль волокна.

6.7.2. Влияние кабельных свойств на возбудимость нейронов

Кабельные свойства нейронов и их отростков во многом предопределяют их реакции на синаптические воздействия. Величина порогового тока у разных нейронов варьирует в широком диапазоне — 10-7–10-10 А. Оказалось, что величина порогового тока обратно зависит от входного сопротивления мембраны нейрона. Зависимость порогового тока от сопротивления описывается гиперболой (рис. 6.16), из чего следует, что пороговый ток определяется входным сопротивлением, а пороговый потенциал является постоянным для электровозбудимых мембраны нейронов. Таким образом, эффективность синапсов, вызывающих токи в мембранах, зависит от входного сопротивления дендрита.

Входное сопротивление волокна увеличивается с уменьшением его радиуса, что было подтверждено специальными измерениями (рис. 6.17).

157

Из этого следует, что более тонкие дистальные дендриты обладают большим входным сопротивлением и, соответственно, меньшие токи могут сдвигать мембранный потенциал к пороговому уровню генерации ПД. Поэтому эффективность синапсов, активирующих дистальные дендриты, может значительно превышать эффективность синапсов на близких к соме дендритах. Из этого также следует важный вывод о том, что синаптические влияния на мелкие нейроны больше, чем на крупные.

Ðèñ. 6.16. График зависимости порога возбуждения мембран нейронов моторной коры кошки от входного сопротивления. Экспериментальные точки аппроксимированы методом наименьших квадратов.

6.7.3. Проведение потенциалов по сложным нейронным отросткам

Самой простой моделью нейрона является гипотетический сфери- ческий нейрон, который представлен множеством параллельно соединенных RC-элементов (рис. 6.18). Все участки в такой модели включе- ны параллельно, поскольку сопротивление цитоплазмы и внешней среды пренебрежимо мало по сравнению с сопротивлением мембраны. Принимая во внимание такое упрощение, эквивалентная электрическая схема сферического нейрона совпадает со схемой единичного элемента мембраны. При стимуляции такого простого RC-элемента по-

тенциал на мембране будет изменяться по экспоненте с постоянной времени τ = RC.

158

Ðèñ. 6.17. Входные сопротивления в теле и дендритах мотонейрона кошки. Числа указывают входное сопротивление (мОм) при удельном сопротивлении мембраны 50 Ом см.

Ðèñ. 6.18. Эквивалентная электрическая схема элемента мембраны (А) и сферического нейрона. Ñ — емкость мембраны, R — сопротивление мембраны, R’ — сопротивление протоплазмы R’’ — сопротивление наружной среды, Ì — мембрана. У шаровидной клетки R’ è R’’ << R.

159

From Wikipedia, the free encyclopedia

In neurobiology, the length constant (λ) is a mathematical constant used to quantify the distance that a graded electric potential will travel along a neurite via passive electrical conduction. The greater the value of the length constant, the farther the potential will travel. A large length constant can contribute to spatial summation—the electrical addition of one potential with potentials from adjacent areas of the cell.

The length constant can be defined as:

{displaystyle lambda ={sqrt {frac {r_{m}}{r_{i}+r_{o}}}}}

where rm is the membrane resistance (the force that impedes the flow of electric current from the outside of the membrane to the inside, and vice versa), ri is the axial resistance (the force that impedes current flow through the axoplasm, parallel to the membrane), and ro is the extracellular resistance (the force that impedes current flow through the extracellular fluid, parallel to the membrane).[1] In calculation, the effects of ro are negligible,[1] so the equation is typically expressed as:

{displaystyle lambda ={sqrt {frac {r_{m}}{r_{i}}}}}

The membrane resistance is a function of the number of open ion channels, and the axial resistance is generally a function of the diameter of the axon. The greater the number of open channels, the lower the rm. The greater the diameter of the axon, the lower the ri.

The length constant is used to describe the rise of potential difference across the membrane

{displaystyle V(x)=V_{max }left(1-e^{-x/lambda }right)}

The fall of voltage can be expressed as:

{displaystyle V(x)=V_{max }e^{-x/lambda }}

Where voltage, V, is measured in millivolts, x is distance from the start of the potential (in millimeters), and λ is the length constant (in millimeters).

Vmax is defined as the maximum voltage attained in the action potential, where:

{displaystyle V_{max }=r_{m}I}

where rm is the resistance across the membrane and I is the current flow.

Setting for x = λ for the rise of voltage sets V(x) equal to .63 Vmax. This means that the length constant is the distance at which 63% of Vmax has been reached during the rise of voltage.

Setting for x = λ for the fall of voltage sets V(x) equal to .37 Vmax, meaning that the length constant is the distance at which 37% of Vmax has been reached during the fall of voltage.

By resistivity[edit]

Expressed with resistivity rather than resistance, the constant λ is (with negligible ro):[2]

{displaystyle lambda ={sqrt {frac {rrho _{m}}{2rho _{i}}}}}

Where r is the radius of the neuron.

The radius and number 2 come from these equations:

Expressed in this way, it can be seen that the length constant increases with increasing radius of the neuron.

See also[edit]

  • Isopotential muscle
  • Time constant

References[edit]

  1. ^ a b Meffin, Hamish; Kameneva, Tatiana (2011-04-01). «The electrotonic length constant: A theoretical estimate for neuroprosthetic electrical stimulation». Biomedical Signal Processing and Control. 6 (2): 105–111. doi:10.1016/j.bspc.2010.09.005. ISSN 1746-8094 – via ScienceDirect.
  2. ^ Page 202 in: Walter F., PhD. Boron (2003). Medical Physiology: A Cellular And Molecular Approach. Elsevier/Saunders. p. 1300. ISBN 1-4160-2328-3.

Тема: На каком расстоянии от места возбуждения?  (Прочитано 1893 раз)

0 Пользователей и 1 Гость просматривают эту тему.

38. На каком расстоянии от места возбуждения потенциал действия в немиелинизированном волокне аксона кальмара уменьшается в 3 раза? Константу затухания считать равной 1,6 мм. Биофизика. Сделать рисунок.


Записан


Решение.
По электрическим свойствам аксон напоминает кабель с проводящей сердцевиной и изолирующей оболочкой. Однако для того чтобы в кабеле не было значительных потерь энергии при протекании тока, сопротивление его должно быть малым, а сопротивление изоляции — очень большим. В аксоне проводящим веществом служит аксоплазма, т. е. раствор электролита, удельное сопротивление которого в миллионы раз больше, чем у меди или алюминия, из которых изготавливают обычные кабели. Удельное сопротивление биомембран достаточно велико, но вследствие их малой толщины сопротивление изоляции «аксонного кабеля» в сотни тысяч раз меньше, чем у технического кабеля. По этой причине однородное нервное волокно не может проводить электрический сигнал на далекое расстояние, интенсивность сигнала быстро затухает.
  Если величина потенциала действия в месте возбуждения была равна φ0, то на расстоянии l от этого места потенциал φ на мембране будет равен:

[ varphi ={{varphi }_{0}}cdot {{e}^{-frac{l}{lambda }}}(1).
 ]

Где λ — постоянная длины нервного волокна, которая определяет степень затухания сигнала в аксоне по экспоненциальному закону.

[ frac{varphi }{{{varphi }_{0}}}=frac{1}{3},,frac{1}{3}={{e}^{-frac{l}{lambda }}},ln ,frac{1}{3}=-frac{l}{lambda },l=-lambda cdot ln frac{1}{3}.l=-1,6cdot {{10}^{-3}}cdot ln frac{1}{3}=1,76cdot {{10}^{-3}}. ]

Ответ: 1,76 мм.

« Последнее редактирование: 21 Мая 2017, 05:47 от alsak »


Записан


Длинная проекция на нейрон, который отводит сигналы

Аксон
Blausen 0657 MultipolarNeuron.png Аксон многополярного нейрона
Идентификаторы
MeSH D001369
Анатомическая терминология [редактировать в Викиданных ]

аксон (от греческого ἄξων áxōn, ось) или нервное волокно (или нерв волокно : см. орфографические различия ), представляет собой длинный тонкий выступ нервной клетки или нейрона у позвоночных, который обычно проводит электрические импульсы, известные как потенциалы действия, от тела нервной клетки. Функция аксона — передавать информацию различным нейронам, мышцам и железам. В некоторых сенсорных нейронах (псевдоуниполярных нейронах ), таких как нейроны прикосновения и тепла, аксоны называются афферентными нервными волокнами, и электрический импульс проходит по ним от периферия к телу клетки и от тела клетки к спинному мозгу вдоль другой ветви того же аксона. Дисфункция аксонов является причиной многих наследственных и приобретенных неврологических расстройств, которые могут поражать как периферические, так и центральные нейроны. Нервные волокна классифицируются на три типа — нервные волокна группы A, нервные волокна группы B и нервные волокна группы C. Группы A и B являются миелинизированными, а группа C немиелинизированными. Эти группы включают как сенсорные волокна, так и двигательные волокна. Другая классификация группирует только сенсорные волокна как Тип I, Тип II, Тип III и Тип IV.

Аксон — это один из двух типов цитоплазматических выступов из тела клетки нейрона; другой тип — дендрит . Аксоны отличаются от дендритов несколькими особенностями, включая форму (дендриты часто сужаются, в то время как аксоны обычно имеют постоянный радиус), длину (дендриты ограничены небольшой областью вокруг тела клетки, в то время как аксоны могут быть намного длиннее) и функцию (дендриты получают сигналы, тогда как аксоны передают их). Некоторые типы нейронов не имеют аксона и передают сигналы от своих дендритов. У некоторых видов аксоны могут исходить из дендритов, известных как дендриты, несущие аксоны. Ни у одного нейрона никогда не бывает более одного аксона; однако у беспозвоночных, таких как насекомые или пиявки, аксон иногда состоит из нескольких областей, которые функционируют более или менее независимо друг от друга.

Аксоны покрыты мембраной, известной как аксолемма ; цитоплазма аксона называется аксоплазмой. Большинство аксонов разветвляются, в некоторых случаях очень обильно. Концевые ветви аксона называются телодендриями. Набухший конец телодендрона известен как окончание аксона, которое соединяется с дендроном или телом клетки другого нейрона, образуя синаптическое соединение. Аксоны контактируют с другими клетками — обычно с другими нейронами, но иногда с клетками мышц или желез — в соединениях, называемых синапсами. В некоторых случаях аксон одного нейрона может образовывать синапс с дендритами того же нейрона, что приводит к аутапсу. В синапсе мембрана аксона плотно прилегает к мембране клетки-мишени, а специальные молекулярные структуры служат для передачи электрических или электрохимических сигналов через промежуток. Некоторые синаптические соединения появляются по всей длине аксона по мере его расширения — они называются проходящими («проходящими») синапсами и могут быть сотнями или даже тысячами вдоль одного аксона. Другие синапсы выглядят как терминалы на концах аксональных ветвей.

Один аксон со всеми его ветвями, взятыми вместе, может иннервировать несколько частей мозга и генерировать тысячи синаптических окончаний. Пучок аксонов образует нервный тракт в центральной нервной системе и пучок в периферической нервной системе. У плацентарных млекопитающих самым большим белым веществом трактом в головном мозге является мозолистое тело, образованное примерно из 200 миллионов аксонов в человеческом мозге.

Содержание

  • 1 Анатомия
    • 1.1 Аксональная область
      • 1.1.1 Аксональный бугор
      • 1.1.2 Начальный сегмент
    • 1.2 Аксональный транспорт
    • 1.3 Миелинизация
    • 1.4 Узлы Ранвье
    • 1.5 Терминалы аксонов
  • 2 Потенциалы действия
  • 3 Развитие и рост
    • 3.1 Развитие
      • 3.1.1 Внеклеточная передача сигналов
      • 3.1.2 Внутриклеточная передача сигналов
      • 3.1.3 Динамика цитоскелета
    • 3.2 Рост
    • 3.3 Регулирование длины
  • 4 Классификация
    • 4.1 Двигательная
    • 4.2 Сенсорная
    • 4.3 Вегетативная
  • 5 Клиническая значимость
  • 6 Анамнез
  • 7 Другие животные
  • 8 См. Также
  • 9 Ссылки
  • 10 Внешние ссылки

Анатомия

Типичный миелинизированный аксон Рассеченный мозг человека, показывающий серое вещество и белое вещество

Аксоны являются основными линии передачи нервной системы, и в виде пучков они образуют нервы. Некоторые аксоны могут достигать одного метра и более, а другие — всего лишь один миллиметр. Самые длинные аксоны в человеческом теле — это аксоны седалищного нерва, которые проходят от основания спинного мозга до большого пальца каждой стопы. Диаметр аксонов также варьируется. Большинство отдельных аксонов имеют микроскопический диаметр (обычно около одного микрометра (мкм) в поперечнике). Самые большие аксоны млекопитающих могут достигать в диаметре до 20 мкм. Гигантский аксон кальмара, который специализируется на очень быстрой передаче сигналов, имеет диаметр, близкий к 1 миллиметру, то есть размер небольшого грифеля карандаша. Количество аксональных телодендрий (разветвляющихся структур на конце аксона) также может различаться от одного нервного волокна к другому. Аксоны в центральной нервной системе (ЦНС) обычно показывают множественные телодендрии с множеством синаптических конечных точек. Для сравнения, аксон гранулярных клеток мозжечка характеризуется одним Т-образным узлом ответвления, от которого отходят два параллельных волокна. Продуманное ветвление позволяет одновременно передавать сообщения большому количеству целевых нейронов в одной области мозга.

В нервной системе есть два типа аксонов: миелинизированные и немиелинизированные аксоны. Миелин представляет собой слой жирового изолирующего вещества, которое образовано двумя типами глиальных клеток шванновских клеток и олигодендроцитов. В периферической нервной системе шванновские клетки образуют миелиновую оболочку миелинизированного аксона. В центральной нервной системе олигодендроциты образуют изолирующий миелин. Вдоль миелинизированных нервных волокон через равные промежутки времени возникают промежутки в миелиновой оболочке, известные как узлы Ранвье. Миелинизация обеспечивает особенно быстрый режим распространения электрического импульса, называемый скачкообразной проводимостью.

Миелинизированные аксоны от кортикальных нейронов образуют основную часть нервной ткани, называемую белым веществом в мозг. Миелин придает белый цвет ткани в отличие от серого вещества коры головного мозга, которое содержит тела нейрональных клеток. Подобное расположение наблюдается в мозжечке. Связки миелинизированных аксонов составляют нервные пути в ЦНС. Там, где эти тракты пересекают среднюю линию мозга и соединяют противоположные области, они называются комиссурами. Самым крупным из них является мозолистое тело, которое соединяет два полушария головного мозга, и у него около 20 миллионов аксонов.

Структура нейрона, как видно, состоит из двух отдельных функциональных областей или компартментов — тела клетки вместе с дендритами в качестве одной области и аксональной области в качестве другой.

Аксональная область

Аксональная область или компартмент включает бугорок аксона, начальный сегмент, остальную часть аксона и телодендрии аксона и терминалы аксона. Он также включает миелиновую оболочку. тельца Ниссля, которые продуцируют нейрональные белки, отсутствуют в аксональной области. Белки, необходимые для роста аксона и удаления отходов жизнедеятельности, нуждаются в транспортном каркасе. Этот аксональный транспорт обеспечивается в аксоплазме за счет расположения микротрубочек и промежуточных филаментов, известных как нейрофиламентов.

Аксональный холмик

Деталь, показывающая микротрубочки на бугорке аксона и начальном сегменте.

бугорок аксона — это область, образованная из тела клетки нейрона, которая расширяется, чтобы стать аксоном. Он предшествует начальному сегменту. Полученные потенциалы действия, которые суммируются в нейроне, передаются на бугорок аксона для генерации потенциала действия из начального сегмента.

Начальный сегмент

начальный сегмент аксона (AIS) представляет собой структурно и функционально отдельный микродомен аксона. Одна из функций начального сегмента — отделить основную часть аксона от остальной части нейрона; другая функция — помочь инициировать. Обе эти функции поддерживают нейрон клеточную полярность, в которой дендриты (и в некоторых случаях сома ) нейрона получают входные сигналы в базальной области, а в апикальной области — аксон нейрона обеспечивает выходные сигналы.

Начальный сегмент аксона немиелинизирован и содержит специализированный комплекс белков. Его длина составляет примерно от 20 до 60 мкм, и он функционирует как место инициации потенциала действия. Как положение на аксоне, так и длина AIS могут меняться, показывая степень пластичности, которая может точно настраивать нейрональный выход. Более длинный AIS связан с большей возбудимостью. Пластичность также проявляется в способности AIS изменять свое распределение и поддерживать активность нейронных схем на постоянном уровне.

AIS очень специализирован для быстрого проведения нервных импульсов. Это достигается за счет высокой концентрации потенциал-управляемых натриевых каналов в начальном сегменте, где возникает потенциал действия. Ионные каналы сопровождаются большим количеством молекул клеточной адгезии и каркасных белков, которые прикрепляют их к цитоскелету. Взаимодействие с анкирином G важно, поскольку он является основным организатором в AIS.

Аксональный транспорт

аксоплазма эквивалентна цитоплазма в ячейке. Микротрубочки образуются в аксоплазме на бугорке аксона. Они расположены по длине аксона в перекрывающихся участках и все направлены в одном направлении — к окончанию аксона. Об этом говорят положительные окончания микротрубочек. Такое перекрывающееся расположение обеспечивает маршруты транспортировки различных материалов из тела клетки. Исследования аксоплазмы показали движение многочисленных пузырьков всех размеров, которые можно увидеть вдоль цитоскелетных филаментов — микротрубочек и нейрофиламентов, в обоих направлениях между аксоном и его окончаниями и телом клетки.

Исходящий антероградный транспорт из тела клетки по аксону переносит митохондрии и мембранные белки, необходимые для роста, к концу аксона. Входящий ретроградный транспорт переносит отходы клетки от терминала аксона к телу клетки. Исходящие и входящие треки используют разные наборы моторных белков. Исходящий транспорт обеспечивается kinesin, а входящий обратный трафик обеспечивается dynein. Динеин направлен на минус-конец. Существует множество форм моторных белков кинезина и динеина, и считается, что каждая из них несет свой груз. Исследования транспорта в аксоне привели к названию кинезина.

Миелинизация

TEM миелинизированного аксона в поперечном сечении. Поперечное сечение аксона: (1) Аксон (2) Ядро (3) Шванновская клетка (4) Миелиновая оболочка (5) Неврилемма

В нервной системе аксоны могут быть миелинизированы, или немиелинизированные. Это обеспечение изолирующего слоя, называемого миелиновой оболочкой. Миелиновая мембрана уникальна своим относительно высоким отношением липидов к белку.

В аксоны периферической нервной системы миелинизируются глиальные клетки, известные как клетки Шванна. В центральной нервной системе миелиновая оболочка представлена ​​другим типом глиальных клеток, олигодендроцитом. Клетки Шванна миелинизируют единственный аксон. Олигодендроцит может миелинизировать до 50 аксонов.

Состав миелина этих двух типов различается. В ЦНС основным белком миелина является протеолипидный белок, а в ПНС — основной белок миелина.

Узлы Ранвье

Узлы Ранвье (также известные как миелиновая оболочка промежутки) представляют собой короткие немиелинизированные сегменты миелинизированного аксона, которые периодически встречаются между сегментами миелиновой оболочки. Следовательно, в точке узла Ранвье аксон уменьшается в диаметре. Эти узлы являются областями, где могут быть созданы потенциалы действия. В скачкообразной проводимости электрические токи, возникающие в каждом узле Ранвье, передаются с небольшим затуханием к следующему узлу в линии, где они остаются достаточно сильными, чтобы генерировать другой потенциал действия. Таким образом, в миелинизированном аксоне потенциалы действия эффективно «прыгают» от узла к узлу, минуя миелинизированные участки между ними, в результате чего скорость распространения намного выше, чем может выдержать даже самый быстрый немиелинизированный аксон.

Терминалы аксона

Аксон может делиться на множество ветвей, называемых телодендриями (греч. Конец дерева). В конце каждого телодендрона находится окончание аксона (также называемое синаптическим бутоном или терминальным бутоном). Терминалы аксонов содержат синаптические пузырьки, в которых хранится нейромедиатор для высвобождения в синапсе. Это делает возможными множественные синаптические связи с другими нейронами. Иногда аксон нейрона может синапсировать с дендритами того же нейрона, когда это известно как аутапс.

Потенциалы действия

Структура типичного химического синапса
Иллюстрированный химический синапс Постсинаптическая. плотность Напряжение -. закрытый Ca. канал Синаптический. везикула Нейротрансмиттер. транспортер Рецептор Нейротрансмиттер Аксонный терминал Синаптическая щель Дендрит

Большинство аксонов несут сигналы в виде потенциалов действия, которые представляют собой дискретные электрохимические импульсы, которые быстро проходят по аксону, начиная с тела клетки и заканчиваясь в точках, где аксон производит синаптический контакт с клетками-мишенями. Определяющей характеристикой потенциала действия является то, что он действует по принципу «все или ничего» — каждый потенциал действия, который генерирует аксон, по существу имеет одинаковый размер и форму. Эта характеристика «все или ничего» позволяет передавать потенциалы действия от одного конца длинного аксона к другому без какого-либо уменьшения размера. Однако есть некоторые типы нейронов с короткими аксонами, которые несут ступенчатые электрохимические сигналы переменной амплитуды.

Когда потенциал действия достигает пресинаптического терминала, он активирует процесс синаптической передачи. Первый шаг — это быстрое открытие каналов для ионов кальция в мембране аксона, позволяя ионам кальция проходить внутрь через мембрану. Результирующее увеличение внутриклеточной концентрации кальция приводит к тому, что синаптические везикулы (крошечные контейнеры, окруженные липидной мембраной), заполненные химическим веществом нейромедиатор, сливаются с мембраной аксона и выводят их содержимое во внеклеточное пространство.. Нейромедиатор высвобождается из пресинаптического нерва посредством экзоцитоза. Затем химический нейротрансмиттер диффундирует к рецепторам, расположенным на мембране клетки-мишени. Нейромедиатор связывается с этими рецепторами и активирует их. В зависимости от типа активируемых рецепторов действие на клетку-мишень может заключаться в возбуждении клетки-мишени, ее подавлении или изменении ее метаболизма каким-либо образом. Вся эта последовательность событий часто происходит менее чем за тысячную долю секунды. После этого внутри пресинаптического терминала новый набор везикул перемещается в положение рядом с мембраной, готовых к высвобождению при достижении следующего потенциала действия. Потенциал действия — это последний электрический шаг в интеграции синаптических сообщений в масштабе нейрона.

(A) пирамидная клетка, интернейрон и форма волны короткой продолжительности (Axon), наложение трех средних форм волны;. ( B) Средняя и стандартная ошибка времени прохождения пика для интернейронов пирамидных клеток и предполагаемых аксонов;. (C) График разброса отношения сигнал / шум для отдельных единиц в зависимости от времени прохождения пика для аксонов, пирамидных клеток (PYR) и интернейронов (INT).

Внеклеточные записи распространения потенциала действия в аксонах были продемонстрированы у свободно движущихся животных. В то время как внеклеточные соматические потенциалы действия использовались для изучения клеточной активности у свободно движущихся животных, таких как клетки места, аксональная активность как в белом, так и в сером веществе также может быть записано. Внеклеточные записи распространения потенциала действия аксонов отличаются от соматических потенциалов действия по трем причинам: 1. Сигнал имеет более короткую длительность спада пика (~ 150 мкс), чем у пирамидных клеток (~ 500 мкс) или интернейронов (~ 250 мкс). 2. Изменение напряжения трехфазное. 3. Активность, записанная на тетроде, видна только на одном из четырех проводов записи. В записях от свободно движущихся крыс аксональные сигналы были изолированы в трактах белого вещества, включая альвеус и мозолистое тело, а также серое вещество гиппокампа.

Фактически, генерация потенциалов действия в vivo является последовательным по своей природе, и эти последовательные всплески составляют цифровые коды в нейронах. Хотя предыдущие исследования указывают на аксональное происхождение одного спайка, вызванного кратковременными импульсами, физиологические сигналы in vivo запускают инициирование последовательных спайков в телах клеток нейронов.

Помимо распространения потенциалов действия на аксоны. терминалов, аксон способен усиливать потенциалы действия, что обеспечивает безопасное распространение последовательных потенциалов действия к окончанию аксона. Что касается молекулярных механизмов, потенциал-управляемые натриевые каналы в аксонах обладают более низким порогом и более коротким рефрактерным периодом в ответ на кратковременные импульсы.

Развитие и рост

Развитие

Развитие аксона до его мишени — одна из шести основных стадий в общем развитии нервной системы. Исследования, проведенные на культивируемых нейронах гиппокампа, предполагают, что нейроны изначально продуцируют несколько нейритов, которые эквивалентны, но только одному из этих нейритов суждено стать аксоном. Неясно, предшествует ли спецификация аксона удлинению аксона или наоборот, хотя недавние данные указывают на последнее. Если разрезать не полностью развитый аксон, полярность может измениться, и другие нейриты потенциально могут стать аксоном. Это изменение полярности происходит только в том случае, если аксон сокращен как минимум на 10 мкм короче, чем другие нейриты. Послетого, как разрез будет сделан, самый длинный нейрит станет будущим аксоном, все остальные нейриты, включая исходный аксон, превратятся в дендриты. Наложение внешней силы на нейрит, заставляющее его удлиняться, превращает его в аксон. Тем не менее, развитие аксонов достигается за счет сложного взаимодействия между внеклеточной передачей сигналов, внутриклеточной передачей сигналов и цитоскелетной динамикой.

Внеклеточная передача сигналов

Внеклеточные сигналы, которые распространяются через внеклеточный матрикс, окружающие нейроны, играют важную роль в развитии аксонов. Эти сигнальные молекулы включают белки, нейротрофические факторы, внеклеточный матрикс и молекулы адгезии. Нетрин (также известный как UNC-6), секретируемый белок, участвует в образовании аксонов. Когда рецептор нетрина UNC-5 мутируется, несколько нейритов нерегулярно проецируются из нейронов, и, наконец, один аксон вытягивается вперед. Нейротрофические факторы — фактор роста нервов (NGF), нейротрофический фактор мозга (BDNF) и нейротрофин-3 (NTF3) также участвуют в развитии аксонов. и связываются с рецепторами Трк.

. ганглиозид -превращающий фермент ганглиозид плазматической мембраны алидаза (PMGS), который участвует в активации TrkA на кончике нейтритов, требуется для удлинения аксонов. PMGS асимметрично распределяется по кончику нейрита, которому суждено стать будущим аксоном.

Внутриклеточная передача сигналов

Во время развития аксонов активности PI3K увеличивается в кончик предназначенного аксона. Нарушение активности PI3K тормозит развитие аксонов. Активация PI3K приводит к производству фосфатидилинозитол (3,4,5) -трисфосфата (PtdIns), который может вызвать значительное удлинение нейрита, превращая его в аксон. Таким образом, сверхэкспрессия фосфатаз, вызывающих нарушение поляризации, приводит к нарушению поляризации.

Цитоскелетная динамика

Нейрит с самым низким актиновым филаментом контент станет аксоном. Концентрация PGMS и содержание f-актина обратно коррелированы; когда PGMS становится обогащенным на кончике нейрита, содержание в нем f-актина снижается. Кроме того, воздействие лекарств, деполимеризующих актин, и токсина B (который инактивирует сигналы передачи Rho ) вызывает образование множественных аксонов. Следовательно, разрыв актиновой сети в конусе роста будет производить ее нейрита в аксон.

Рост

Аксонятидневной мыши с видимым конусом роста

Растущие аксоны проходят через их окружение через конус роста , который находится на кончике аксона. Конус роста имеет широкое пластинчатое расширение, называемое ламеллиподиумом, содержит выступы, называемые филоподиями. Филоподии — это механизм, с помощью которого весь процесс прикрепляется к поверхностям и исследует нашу среду. Актин играет важную роль в подвижности этой системы. Среда с высоким уровнем молекулы клеточной адгезии (CAM) идеальная среда для роста аксонов. Похоже, это обеспечивает «липкую» поверхность для роста аксонов. Примеры CAM, специфичных для нейронных систем, включают N-CAM, TAG-1 — аксональный гликопротеин — и MAG, все из которых являются частью суперсемейства иммуноглобулинов. Другой набор молекул, называемый внеклеточный матрикс — молекулы адгезии, также обеспечивает липкий субстрат для роста аксонов. Примеры этих молекул включают ламинин, фибронектин, тенасцин и перлекан. Некоторые из них поверхностно связаны с клетками и, таким образом, как аттрактанты или репелленты ближнего действия. Другие являются диффундирующими лигандами и, следовательно, могут иметь длительного длительного действия.

Клетки, называемые направляющими клетками, дают в первую ростом аксонов нейронов. Эти клетки, которые обеспечивают наведению аксонов, обычно представляют собой другие нейроны, иногда являющиеся незрелыми. Когда аксон завершит свой рост в месте его соединения с мишенью, диаметр аксона может увеличиться до раз, в зависимости от требуемой скорости проводимости.

Он также имеет исследованиям было обнаружено, что если аксоны нейрона были повреждены, пока сома (тело клетки нейрона ) не повреждена, аксоны будут регенерировать и воссоздавать синаптические связи с нейронами с помощью ячеек указателя. Это также называется нейрорегенерацией.

Nogo-A — это тип компонента, ингибирующего отрастание нейритов, который присутствует в миелиновых мембранах центральной нервной системы (обнаружен в аксоне). Он играет решающую роль в ограничении регенерации аксонов центральной нервной системы взрослых млекопитающих. В недавних исследованиях, если Nogo-A заблокирован и нейтрализован, можно вызвать регенерацию аксонов на большом расстоянии, что приводит к усилению функционального восстановления у крыс и спинного мозга мыши. Этого еще предстоит сделать на людях. Недавнее исследование также показало, что макрофаги, активируемые специфическим воспалительным процессом, активируемым рецептором дектина-1, способным восстановлением аксонов, однако также вызывают нейротоксичность в нейроне.

Регулировка длины

Аксоны в степени различаются по длине от нескольких микрометров до метров у некоторых животных. Это подчеркивает, что аксонует механизм регулирования длины клетки, позволяющий нейронам ощущать длину своихонов и соответственно должен контролировать их рост. Было обнаружено, что играет важную роль в регулировании длины аксонов. Основываясь на этом наблюдении, исследователи разработали модель роста аксонов, описывающую, как моторные белки, увеличивающие длину аксона на молекулярном уровне. Эти исследования предполагают, что моторные белки переносят сигнальные молекулы от сомы к конусу роста и наоборот, колеблется во времени с параметрами, зависящей от длины.

Классификация

Аксоны нейронов задней части периферической системы можно классифицировать на основе их физических характеристик и свойств проводимости сигнала. Известно, что эти аксоны имеют разную толщину (от 0,1 до 20 мкм), считалось, что эти аксоны связаны со скоростью, определяющей потенциал действия может перемещаться по аксону — скорость его проводимости. Эрлангер и Гассер подтвердили эти гипотезу и идентифицировали несколько типов волокон, установив связь между аксона и его скоростью проводимости нерва. Они опубликовали свои открытия в 1941 году, дав первую класси установкуонов.

Аксоны подразделяются на две системы. Первый, введенный Эрлангером и Гассером, сгруппировал волокна три основных, используя буквы A, B и C. Эти группы: группа A, группа B и группа C включает как сенсорные волокна (афференты ), так и моторные волокна (эфференты ). Первая группа A была разделена на альфа, бета, гамма и дельта волокна — Aα, Aβ, Aγ и Aδ. Моторными нейронами различных моторных волокон были нижние мотонейроны — альфа-мотонейрон, бета-мотонейрон и гамма-мотонейрон <55.>Имеющий нервные волокна Aα, Aβ и Aγ соответственно.

Позже другие исследователи обнаружили две группы волокон Aa, которые были сенсорными волокнами. Затем они были введены в систему, включающую только сенсорные волокна (хотя некоторые из них были смешанными нервами, а также двигательными волокнами). Эта система называет сенсорные группы Типами и использует римские цифры: Тип Ia, Тип Ib, Тип II, Тип III и Тип IV.

Мотор

Нижние мотонейроны имеют два типа волокон:

Типы моторных волокон

Тип Эрлангер-Гассер. Классификация Диаметр. (мкм) Миелин Проводимость. скорость (м / с) Связанные мышечные волокна
α 13-20 Да 80–120 Экстрафузальные мышечные волокна
β
γ 5-8 Да 4–24 Внутрифузальные мышечные волокна

Сенсорные

Различные сенсорные рецепторы иннервируют разные типы нервных волокон. Проприоцепторы иннервируются сенсорными волокнами типа Ia, Ib и II, механорецепторами сенсорными волокнами типа II и III и ноцицепторами и терморецепторами сенсорными волокнами III и IV типа.

Типы сенсорных волокон

Тип Эрлангер-Газсер. Классификация Диаметр. (мкм) Миелин Проводимость. скорость (м / с) Ассоциированные сенсорные рецепторы Проприорецепторы Механоцепторы Ноцицепторы и. терморецепторы
Ia 13-20 Да 80–120 Первичные рецепторы мышечного веретена (кольцевидное окончание)
Иб 13-20 Да 80–120 Сухожильный орган Гольджи
II 6-12 Да 33–75 Вторичные рецепторы мышечное веретено (окончание цветочно-спрей).. Все кожные механорецепторы
III 1-5 Тонкий 3–30 Свободные нервные окончания прикосновения и давление. Ноцицепторы бокового спиноталамического тракта. Холодные терморецепторы
IV C 0,2- 1,5 No 0,5-2,0 Ноцицепторы переднего спинного мозга. Тепловые рецепторы

вегетативные

вегетативная нервная система имеет два вида периферического волокна s:

Типы волокна

Тип Erlanger-Gasser. Классификация Диаметр. (мкм) Myelin Проводимость. скорость (м / с)
преганглионарные волокна B 1–5 Да 3–15
постганглионарные волокна C 0,2–1,5 No 0,5–2, 0

Клиническая значимость

По степени тяжести повреждение нерва может быть описана как нейропраксия, аксонотмезис или невротмезис. Сотрясение мозга считается легкой формой диффузного повреждения аксонов. Поражение аксонов также может вызывать центральный хроматолиз. Дисфункция аксонов в нервной системе является одной из причин многих наследственных неврологических расстройств, которые поражают периферические, так и центральные нейроны.

Когда аксон разрушается, активный процесс дегенерация аксона происходит в части аксона, наиболее удаленной от тела клетки. Эта дегенерация происходит быстро после травмы, когда часть аксона блокируется мембранами и разрушается макрофагами. Это известно как валлеровское вырождение. Отмирание аксона также может иметь место при многих нейродегенеративных заболеваниях, особенно при нарушении транспорта аксонов, известно как дегенерация, подобная валлеровской. Исследования показывают, что аксональный белок NMNAT2 не может достичь всего аксона.

Демиелинизация аксонов вызывает множество неврологических симптомов, обнаруженных при заболевании рассеянный склероз.

Дисмиелинизация — это аномальное образование миелиновой оболочки. Это связано с использованием лейкодистрофиями, а также с шизофренией.

Тяжелая черепно-мозговая травма может привести к обширным пораженным нервным путям, повреждая аксоны в состоянии, известном как диффузное повреждение аксонов. Это может привести к устойчивому вегетативному состоянию. В исследованиих на крысе было показано, что повреждение аксонов в результате повреждения однократной черепно-мозговой травмы может привести к дальнейшему повреждению после повторных легких черепно-мозговых травм.

A канал для направления нервов является искусственным средством управления ростом аксонов для обеспечения нейрорегенерации и одним из многих методов лечения, используется для травм нерва.

История

Немецкий анатом Отто Фридриху Карлу Дейтерсу обычно приписывают открытие аксона, отличив его от дендритов. Швейцарский Рюдольф Альберт фон Келликер и немец Роберт Ремак были первыми, кто идентифицировал и охарактеризовал начальный сегмент аксона. Кёлликер назвал аксон в 1896 году. Луи-Антуан Ранвье был первым, кто описал промежутки или узлы, обнаруженные на аксонах, и за этот вклад эти аксональные особенности теперь обычно называют узлами Ранвье. Сантьяго Рамон-и-Кахал, испанский анатом, предположил, что аксоны были выходными компонентами нейронов, описывая их функции. Джозеф Эрлангер и Герберт Гассер ранее разработали классификацию система для периферических нервных волокон, основанная на скорости аксональной проводимости, миелинизации, размере волокон и т. д. Алан Ходжкин и Эндрю Хаксли также использовали гигантский аксон кальмара (1939), а к 1952 году они получили полное количественное описание ионной основы потенциала действия, что привело к формулировке модели Ходжкина-Хаксли. Ходжкин и Хаксли были совместно удостоены Нобелевской премии за эту работу в 1963 году. Формулы, описывающие аксональную проводимость, были распространены на позвоночных в уравнениях Франкенхейзера-Хаксли. Понимание биохимической основы распространения потенциала действия продвинулось дальше и включает множество деталей об отдельных ионных каналах.

других животных

Аксоны у беспозвоночных были тщательно изучены. прибрежный кальмар, часто используемый в качестве модельного организма, имеет самый длинный из известных аксонов. гигантский кальмар имеет самый большой известный аксон. Его размер составляет от половины (обычно) до одного миллиметра в диаметре, и он используется для управления его системой реактивного движения. Самая быстрая зарегистрированная скорость проводимости 210 м / с обнаружена в заключенных в оболочку аксонах некоторых пелагических креветок Penaeid, а обычный диапазон составляет от 90 до 200 м / с (cf 100– 120 м / с для самого быстрого аксона миелинизированных позвоночных.)

В других случаях, как видно из исследований на крысах, аксон происходит из дендрита; такие аксоны, как говорят, имеют «дендритное происхождение». Некоторые аксоны с дендритным происхождением аналогичным образом имеют «проксимальный» начальный сегмент, который начинается непосредственно в источнике аксона, в то время как другие имеют «дистальный» начальный сегмент, заметно отделенный от источника аксона. У многих видов некоторые из нейронов имеют аксоны, которые исходят из дендрита, а не из тела клетки, и они известны как дендриты, несущие аксоны. Во многих случаях аксон берет свое начало от бугорка аксона на соме; такие аксоны, как говорят, имеют «соматическое происхождение». Некоторые аксоны соматического происхождения имеют «проксимальный» начальный сегмент, прилегающий к бугорку аксона, в то время как другие имеют «дистальный» начальный сегмент, отделенный от сомы расширенным бугорком аксона.

См. Также

  • Электрофизиология
  • Ганглиозное возвышение
  • Гигантская аксональная нейропатия
  • Нейронное отслеживание
  • Пионерный аксон

Ссылки

Внешние ссылки

  • Изображение гистологии: 3_09 в Центре медицинских наук Университета Оклахомы — «Слайд 3 Спинной мозг »

© Преподаватель Анна Евкова

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Правовые документы

Telegram и логотип telegram являются товарными знаками корпорации Telegram FZ-LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Нервная система состоит из нейронов (специфических клеток, имеющих отростки) и нейроглии (она заполняет пространство между нервными клетками в ЦНС). Главное отличие между ними заключается в направлении передачи нервного импульса. Дендриты – это принимающие ответвления, по ним сигнал идет к телу нейрона. Передающие клетки – аксоны – проводят сигнал от сомы к принимающим. Это могут быть не только отростки нейрона, но и мышцы.

дендриты это

Отличия аксонов и дендритов

Какова же разница между ними? Рассмотрим.

  1. Дендрит нейрона короче передающего отростка.
  2. Аксон всего один, принимающих ответвлений может быть много.
  3. Дендриты сильно ветвятся, а передающие отростки начинают разделяться ближе к концу, образуя синапс.
  4. Дендриты истончаются по мере удаления от тела нейрона, толщина аксонов практически неизменна по всей длине.
  5. Аксоны покрыты миелиновой оболочкой, состоящей из липидных и белковых клеток. Она выполняет роль изолятора и защищает отросток.

Поскольку нервный сигнал передается в виде электрического импульса, клеткам необходима изоляция. Её функции выполняет миелиновая оболочка. Она имеет мельчайшие разрывы, способствующие более быстрой передаче сигнала. Дендриты – это безоболочечные отростки.

Определение

Мозговое вещество – высокоорганизованная структура, образованная нервными клетками, от которых отходят аксоны. Из нервных клеток состоит мозговая ткань. Аксон в переводе с греческого означает «ось» – это такой отросток, элемент мозгового вещества, который обеспечивает взаимодействие между клетками разного типа (нейроны, клетки иннервируемых органов), что ассоциируется с тонким, четким управлением работой органов и систем. Функции ткани ЦНС:

  1. Воспринимает раздражения, преобразуя их в импульсы.
  2. Поддерживает передачу импульсов от управляющих отделов мозга к исполнительным органам.
  3. Формирует ответную реакцию на раздражающее воздействие.
  4. Обеспечивает взаимодействие в работе систем и органов, поддерживает интеграцию структурных единиц организма.
  5. Обеспечивает взаимосвязь организма с внешней средой.

Согласно определению в биологии, аксон (англ. axon) – удлиненный отросток, по которому идут импульсы от тела нейрона к другим нервным клеткам и структурным элементам всех тканей организма. Мозговая ткань в период внутриутробного развития образуется из нервной пластины. Края пластинки прогибаются, что приводит к формированию валиков и желобка. В результате смыкания краев валиков возникает нервная трубка – основа ЦНС.

Дифференциация клеток, образующих трубку, приводит к появлению нейробластов и спонгиобластов. Первые служат основой для формирования нейронов, вторые – для образования нейроглии. Нейроны (анат.) – основные структурные элементы мозгового вещества. Они характеризуются отсутствием функции деления, что приводит к постепенному уменьшению их численности. Тело нейрона состоит из ядра и цитоплазмы. В зависимости от типа нейронов меняется геометрическая форма тела, которая бывает круглая, овальная, пирамидальная и другая.

строение нейрона

Цитоскелет, состоящий из микротрубочек и нейрофибриллов, обеспечивает опорную и трофическую функцию. Цитоскелет поддерживает форму нейрона, обеспечивает транспорт веществ и органелл. От тела ответвляются отростки – единичный аксон и множественные дендриты. Аксон нейрона почти не ветвится, иногда образует коллатеральные (обходные) сегменты. Концевые сегменты (окончания) разветвляются, называются терминали.

Терминали взаимосвязаны с окончаниями других нейронов и с клетками, образующими паренхиму (ткань) рабочих органов – мышц, желез. Количество дендритов варьируется от 1 до нескольких. Тонкие ответвления дендритов оканчиваются небольшими шипами, где сосредоточены терминали аксональных отростков многих тысяч других клеток. Дендриты воспринимают раздражения или потенциалы действия от других клеток и передают их по волокнам к телу своего нейрона.

Рост аксона зависит от особенностей строения и жизнедеятельности нейрона, который поддерживает функцию питания отростка. К примеру, если перерезать аксональный ствол, сегмент, связанный с телом, остается жизнеспособным и продолжает деятельность, участок, утративший связь с телом, отмирает. Аксоны образуют нервы, что предполагает сложную структурно-морфологическую организацию ЦНС.

цнс человека

Синапс

Место, в котором происходит контакт между ответвлениями нейронов или между аксоном и принимающей клеткой (например, мышечной), называется синапсом. В нем может участвовать всего по одному ответвлению от каждой клетки, но чаще всего контакт происходит между несколькими отростками. Каждый вырост аксона может контактировать с отдельным дендритом.

дендрит нейрона

Сигнал в синапсе может передаваться двумя способами:

  1. Электрическим. Это происходит только в случае, когда ширина синаптической щели не превышает 2 нм. Благодаря такому маленькому разрыву импульс проходит через него, не задерживаясь.
  2. Химическим. Аксоны и дендриты вступают в контакт благодаря разнице потенциалов в мембране передающего отростка. С одной ее стороны частицы имеют положительный заряд, с другой – отрицательный. Это обусловлено разной концентрацией ионов калия и натрия. Первые находятся внутри мембраны, вторые – снаружи.

При прохождении заряда увеличивается проницаемость мембраны, и натрий входит в аксон, а калий выходит из него, восстанавливая потенциал.

Сразу после контакта отросток становится невосприимчивым к сигналам, через 1 мс способен к передаче сильных импульсов, через 10 мс возвращается в исходное состояние.

Дендриты – это принимающая сторона, передающая импульс от аксона телу нервной клетки.

Особенности, характерные для типичных дендритов и аксонов

⇐ ПредыдущаяСтр 3 из 14Следующая ⇒

Дендриты Аксоны
От тела нейрона отходит несколько дендритов У нейрона имеется только один аксон
Длина редко превышает 700 мкм Длина может достигать 1 м
По мере удаления от тела клетки диаметр быстро уменьшается Диаметр сохраняется на значительном расстоянии
Образовавшиеся в результате деления ветви локализуются возле тела Терминали располагаются далеко от тела клетки
Имеются шипики Шипики отсутствуют
Не содержат синаптических пузырьков Содержат в большом числе синаптические пузырьки
Содержат рибосомы Рибосомы могут обнаруживаться в незначительном числе
Лишены миелиновой оболочки Часто окружены миелиновой оболочкой

Терминали дендритов чувствительных нейронов образуют чувствительные окончания. Основной функцией дендритов является получение информации от других нейронов. Дендриты проводят информацию к телу клетки, а затем к аксонному холмику.

Аксон. Аксоны образуют нервные волокна, по которым передается информация от нейрона к нейрону или к эффекторному органу. Совокупность аксонов образует нервы.

Общепринято подразделение аксонов на три категории: А, В и С. Волокна группы А и В являются миелинизированными, а С – лишены миелиновой оболочки. Диаметр волокон группы А, которые составляют большинство коммуникаций центральной нервной системы, варьирует от 1 до 16 мкм, а скорость проведения импульсов равна их диаметру, умноженному на 6. Волокна типа А подразделяются на Аa, Аb, Аl, Аs. Волокна Аb, Аl, Аs имеют меньший диаметр, чем волокна Аa, меньшую скорость проведения и более длительный потенциал действия. Волокна Аb и Аs являются преимущественно чувствительными волокнами, которые проводят возбуждение от различных рецепторов в ЦНС. Волокна Аl – это волокна, которые проводят возбуждение от клеток спинного мозга к интрафузальным мышечным волокнам. В-волокна являются характерными для преганглионарных аксонов вегетативной нервной системы. Скорость проведения 3-18 м/с, диаметр 1-3 мкм, продолжительность потенциала действия 1-2 мс, нет фазы следовой деполяризации, а есть длительная фаза гиперполяризации (более 100 мс). Диаметр С-волокон от 0,3 до 1,3 мкм, и скорость проведения импульсов в них несколько меньше величины диаметра, умноженного на 2, и равняется 0,5-3 м/с. Длительность потенциала действия этих волокон составляет 2 мс, отрицательный следовой потенциал равняется 50-80 мс, а положительный следовой потенциал – 300-1000 мс. Большинство С-волокон являются постганглионарными волокнами вегетативной нервной системы. В миелинизированных аксонах скорость проведения импульсов выше, чем в немиелизированных.

Аксон содержит аксоплазму. У крупных нервных клеток ей принадлежит около 99% всей цитоплазмы нейрона. Цитоплазма аксонов содержит микротрубочки, нейрофиламенты, митохондрии, агранулярный эндоплазматический ретикулум, везикулы и мультивезикулярные тела. В разных частях аксона существенно меняются количественные отношения между этими элементами.

У аксонов, как миелинизированных, так и немиелизированных, есть оболочка – аксолемма.

В зоне синаптического контакта мембрана получает ряд дополнительных цитоплазматических соединений: плотные выступы, ленты, субсинаптическая сеть и др.

Начальный участок аксона (от его начала до того места, где наступает сужение до диаметра аксона) носит название аксонного холмика. От этого места и появления миелиновой оболочки простирается начальный сегмент аксона. В немиелинизированных волокнах эта часть волокна определяется с трудом, а некоторые авторы считают, что начальный сегмент присущ только тем аксонам, которые покрыты миелиновой оболочкой. Он отсутствует, например, у клеток Пуркинье в мозжечке.

В месте перехода аксонного холмика в начальный сегмент аксона под аксолеммой появляется характерный электронноплотный слой, состоящий из гранул и фибрилл, толщиной 15 нм. Этот слой не связан с плазматической мембраной, а отделен от нее промежутками до 8 нм.

В начальном сегменте по сравнению с телом клетки резко уменьшается количество рибосом. Остальные компоненты цитоплазмы начального сегмента – нейрофиламенты, митохондрии, везикулы – переходят из аксонного холмика сюда, не изменяясь ни по внешнему виду, ни по взаиморасположению. На начальном сегменте аксона описаны аксо-аксональные синапсы.

Часть аксона, покрытая миелиновой оболочкой, обладает только ей присущими функциональными свойствами, которые связаны с проведением нервных импульсов с большой скоростью и без декремента (затухания) на значительные расстояния. Миелин является продуктом жизнедеятельности нейроглии. Проксимальной границей у миелинизированного аксона служит начало миелиновой оболочки, а дистальной – утрата ее. Далее следуют более или менее длинные терминальные отделы аксона. В этой части аксона отсутствует гранулярный эндоплазматический ретикулум и очень редко встречаются рибосомы. Как в центральных отделах нервной системы, так и на периферии аксоны окружены отростками глиальных клеток.

Миелинизированная оболочка имеет сложное строение. Ее толщина варьирует от долей до 10 мкм и более. Каждая из концентрически расположенных пластинок состоит из двух наружных плотных слоев, образующих главную плотную линию, и двух светлых бимолекулярных слоев липидов, разделенных промежуточной осмиофильной линией. Промежуточная линия аксонов периферической нервной системы представляет собой соединение наружных поверхностей плазматических мембран шванновской клетки. Каждый аксон сопровождается большим числом шванновских клеток. Место, где шванновские клетки граничат между собой, лишено миелина и называется перехватом Ранвье. Между длиной межперехватного участка и скоростью проведения нервных импульсов есть прямая зависимость.

Перехваты Ранвье составляют сложную структуру миелинизированных волокон и играют важную функциональную роль в проведении нервного возбуждения.

Протяженность перехвата Ранвье миелинизированных аксонов периферических нервов находится в пределах 0,4-0,8 мкм, в центральной нервной системе перехват Ранвье достигает 14 мкм. Длина перехватов довольно легко изменяется под действием различных веществ. В области перехватов, помимо отсутствия миелиновой оболочки, наблюдаются значительные изменения структуры нервного волокна. Диаметр крупных аксонов, например, уменьшается наполовину, мелкие аксоны изменяются меньше. Аксолемма имеет обычно неправильные контуры, и под ней лежит слой электронноплотного вещества. В перехвате Ранвье могут быть синаптические контакты как с прилежащими к аксону дендритами (аксо-дендритические), так и с другими аксонами.

Коллатерали аксонов. С помощью коллатералей происходит распространение нервных импульсов на большее или меньшее число последующих нейронов.

Аксоны могут делиться дихотомически, как, например, у зернистых клеток мозжечка. Очень часто встречается магистральный тип ветвления аксонов (пирамидные клетки коры мозга, корзинчатые клетки мозжечка). Коллатерали пирамидных нейронов могут быть возвратными, косоидущими и горизонтальными. Горизонтальные ответвления пирамид простираются иногда на 1-2 мм, объединяя пирамидные и звездчатые нейроны своего слоя. От горизонтально распространяющегося (в поперечном направлении к длинной оси извилины мозга) аксона корзинчатой клетки образуются многочисленные коллатерали, которые заканчиваются сплетениями на телах крупных пирамидных клеток. Подобные аппараты, так же как и окончания на клетках Реншоу в спинном мозге, являются субстратом для осуществления процессов торможения.

Коллатерали аксонов могут служить источником образования замкнутых нейронных цепей. Так, в коре больших полушарий все пирамидные нейроны имеют коллатерали, которые принимают участие во внутрикорковых связях. За счет существования коллатералей обеспечивается в процессе ретроградной дегенерации сохранность нейрона в том случае, если повреждается основная ветвь его аксона.

Терминали аксонов. К терминалям относятся дистальные участки аксонов. Они лишены миелиновой оболочки. Протяженность терминалей значительно варьирует. На светооптическом уровне показано, что терминали могут быть либо одиночными и иметь форму булавы, сетевидной пластинки, колечка, либо множественными и походить на кисть, чашевидную, моховидную структуру. Размер всех этих образований изменяется от 0,5 до 5 мкм и более.

Тонкие разветвления аксонов в местах контакта с другими нервными элементами нередко имеют веретеновидные или бусинковидные расширения. Как показали электронно-микроскопические исследования, именно в этих участках имеются синаптические соединения. Одна и та же терминаль дает возможность одному аксону устанавливать контакт с множеством нейронов (например, параллельные волокна в коре головного мозга) (рис. 1.2).

Функции нервных волокон

Распространение возбуждения в нервных волокнах.Изменения мембранного потенциала, вызываемые электрическим током, подразделяются на пассивные и активные.

Пассивные, или электротонические, изменения мембранного потенциала определяются физическими (электрическими) параметрами как самой мембраны, так и всей клетки (волокна) в целом.

Пассивные сдвиги мембранного потенциала возникают при действии на возбудимые образования электрического тока любой силы, формы или направления. Однако если при гиперполяризующем (анодном) и слабом деполяризующем (катодном) токах пассивные изменения потенциала могут наблюдаться в чистом (неосложненном) виде, то при близких к порогу и сверхпороговых деполяризующих стимулах они сопровождаются активными сдвигами потенциала: локальным ответом и потенциалом действия, связанными с изменениями ионной проницаемости мембраны.

Пассивные свойства мембраны и всего волокна в целом в значительной мере определяют условия возникновения и распространения возбуждения в нервном волокне.

Исследования показывают, что в однородно поляризуемом, однородном участке нервного волокна изменения мембранного потенциала при приложении прямоугольного толчка гиперполяризующего или слабого деполяризующего тока нарастают по экспоненте:

,

где RC = τ

– постоянная времени мембраны, т.е. время, в течение которого потенциал нарастает до 63% от своей конечной величины. При выключении тока потенциал возвращается к исходному уровню по экспоненте с той же постоянной времени
τ
. Такие изменения мембранного потенциала принято называть пассивными или электротоническими, в отличие от активных, связанных с повышением или снижением ионных проводимостей мембраны.

Подобные изменения наблюдаются на сферических клетках (на соме). Описание цилиндрической клетки, в частности аксона, более сложно. В этом случае уже нельзя считать внутренний проводник эквипотенциальным по всей длине. Внешний проводник можно считать эквипотенциальным за счет увеличения объема внеклеточной жидкости. Потенциал на такой мембране зависит не только от времени включения тока, но и от расстояния х

по отношению к месту приложения тока:

,

где а

– радиус волокна,
R
– удельное сопротивление аксоплазмы,

и

– емкость и сопротивление на единицу площади мембраны. Левая часть уравнения описывает плотность тока через каждую точку мембраны, которая равна сумме плотностей емкостного ()и омического () токов, стоящих в правой части уравнения.

Через длительное время (намного большего постоянной времени t = RМ CМ

) после включения импульса емкость мембраны полностью зарядится и емкостный ток станет равным нулю. Уравнение примет вид:

.

Его решение:

,

где V0

– потенциал в начале кабеля (
х
= 0),
l
– постоянная длины волокна.

Постоянная длины характеризует крутизну затухания потенциала вдоль волокна. Чем больше l

, тем дальше по волокну проходит сигнал. Скорость электротонического распространения пропорциональна удвоенной величине константы длины волокна
l
и обратно пропорциональна постоянной времени
t = RМ CМ
. Величина
l
может быть выражена через сопротивление мембраны

, сопротивление внутренней среды – аксоплазмы
Ri
и диаметра волокна
d
:

.

Кабельные свойства нервных волокон оказывают существенное влияние не только на развитие электротонических потенциалов, но и на характер активных ответов – величину порога, амплитуду, крутизну нарастания и длительность потенциала действия.

В настоящее время можно считать строго доказанным, что проведение потенциала действия (ПД) вдоль нервного волокна осуществляется с помощью локальных токов, возникающих между возбужденным и покоящимся участками мембраны. Локальный ток изменяет величину мембранного потенциала покоя в покоящемся участке до критического уровня деполяризации, что и является причиной возникновения потенциала действия.

Многочисленными исследованиями было показано, что скорость проведения пропорциональна постоянной длины волокна l

и обратно пропорциональна постоянной времени мембраны
t
(Чайлохян Л.М., 1962). Поскольку в безмякотных нервных волокнах
l
пропорциональна квадратному корню из диаметра волокна

,

скорость проведения при прочих равных условиях также пропорциональна корню квадратному из диаметра волокна.

В миелинизированных нервных волокнах проведение происходит сальтаторно – от перехвата Ранвье к перехвату Ранвье. Длина межперехватного участка примерно пропорциональна диаметру волокна, поэтому скорость проведения в этих волокнах пропорциональна не корню квадратному из диаметра волокна, а просто его диаметру.

Принято считать, что скорость проведения зависит от величины так называемого фактора безопасности (гарантийности) Ф

, т.е. отношения амплитуды распространяющегося ПД к пороговому потенциалу. Пороговый потенциал – это та величина, на которую нужно изменить мембранный потенциал, чтобы достичь критического уровня деполяризации.

,

где Vs

– амплитуда ПД,
Vt
– пороговый потенциал.

При Ф = Vt

распространения возбуждения нет. Для аксона краба это отношение равно 7.

Было показано, что пороговый потенциал Vt

находится в тесной зависимости от чувствительности системы натриевой проницаемости мембраны к деполяризации. Чем выше эта чувствительность, т.е. чем на большую величину повышается
PNa
и, соответственно, натриевый входящий ток
INa
при данном сдвиге потенциала, тем ниже порог, и наоборот. Изменение состояния системы калиевой проницаемости на величину порогового потенциала практически не оказывает влияния. Точно так же очень мало влияет на пороговый потенциал проводимость токов «утечки». При постоянном потенциале покоя фактор безопасности должен возрастать при воздействиях на нервное волокно, которые повышают чувствительность натриевой системы к деполяризации, например, снижение концентрации ионов кальция в окружающей среде. Значительное снижение фактора безопасности вызывают агенты, усиливающие исходную инактивацию натриевой системы или уменьшающие натриевую проводимость, поскольку в этом случае амплитуда потенциала действия падает, а пороговый потенциал растет. Такие изменения проведения возбуждения наблюдал Тасаки (1957) и другие исследователи при воздействии на нервное волокно анестетиков и наркотиков в малых концентрациях, недостаточных для полного подавления потенциала действия.

Сложное влияние на фактор безопасности оказывает уровень потенциала покоя. Кратковременная подпороговая деполяризация мембраны, не изменяющая существенным образом критического потенциала и амплитуды потенциала действия, повышает фактор безопасности, так как Vt = Eo – Ek

. При сильной же деполяризации амплитуда спайка падает, критический потенциал растет, поэтому фактор безопасности уменьшается.

Наряду с фактором безопасности существенное влияние на скорость проведения возбуждения оказывает крутизна восходящей фазы распространяющегося потенциала действия. Крутизна этой фазы зависит как от пассивных, так и активных свойств мембраны.

Примерно 1/3 восходящей фазы распространяющегося ПД связана с пассивной деполяризацией мембраны нервного волокна током локальной цепи. Скорость же этой деполяризации при данной силе локального тока определяется постоянной времени мембраны t = RM CM

. Чем эта величина меньше, тем быстрее нарастает деполяризация и, следовательно, круче поднимается спайк. Инактивация натриевой системы, или снижение проницаемости для натрия (активные свойства мембраны), резко уменьшает крутизну восходящей фазы. Таким образом, при большинстве воздействий изменения скорости нарастания восходящей фазы ПД по своему направлению совпадают с изменениями фактора безопасности.

Согласно теории локальных токов, амплитуда распространяющегося потенциала действия Vs

, в отличие от мембранного спайка, зависит не только от ЭДС возбужденной мембраны
Е
, но и от соотношения входных сопротивлений возбужденного
R1
и невозбужденного (сопротивление нагрузки
R2
) участков волокна:

. (1)

Чем отношение выше, тем в большей мере амплитуда распространяющегося ПД приближается к величине Е

, тем, следовательно, выше фактор безопасности, и наоборот. Из чего вытекает, что снижение сопротивления мембраны (повышение ее ионной проводимости) при критической деполяризации не только ведет к возникновению спайка, но и способствует увеличению фактора безопасности, а значит, и скорости проведения.

Из формулы (1) ясно, что при проведении возбуждения по геометрически неоднородным возбудимым проводникам амплитуда распространяющегося спайка должна существенно зависеть от того, насколько близко находится возбужденный в данный момент участок волокна к месту его ветвления или расширения.

При расширении нервного волокна, например, в месте перехода его в тело клетки или в области ветвления аксона, суммарная площадь сечения волокон и общая площадь их мембраны увеличивается, а следовательно, R2

падает. Уменьшение
R2
снижает фактор безопасности и, соответственно, скорость проведения. При некоторых условиях уменьшение
R2
может привести к полному блокированию нервного импульса.

Расчеты показали, что потенциал действия легко проходит трехкратное расширение, с трудом пятикратное и полностью блокируется при шестикратном. Причиной развития блока является резкое снижение амплитуды распространяющегося ПД вблизи области расширения волокна.

Трофическая функция нервных волокон.Трофической функцией обладают афферентные и эфферентные волокна.

Афферентные нервы обладают двумя нейротрофическими, неимпульсными функциями. Можно различить прямое морфогенетическое и трофическое влияние на периферические органы и регуляторную функцию с обратной связью, зависящую, вероятно, от внутриаксональных центростремительных импульсов. Нейротрофическое морфогенетическое влияние доказано наличием: а) зависимости структуры вкусовых почек от вкусовых нервов; б) стимулирования регенерации конечности у амфибий чувствительными нервами посредством специфического, стимулирующего рост вещества немедиаторной природы; в) дифференцировки и поддержания рецепторов. После деафферентации в некоторых органах развиваются трофические нарушения. Первичный «трофический» нейрон для мышцы – это нейрон моторный. Нельзя забывать также, что во всех нервах проходят эфферентные адренергические волокна, вкоторых нейросекреты (катехоламины) транспортируются аксоплазматическим током к периферическим органам.

Аксональный транспорт.Описаны две системы аксонального транспорта – медленный, со скоростью 1-3 мм/день, и быстрый, со скоростью примерно 400 мм/день.

Аксональный транспорт поддерживает непрерывность аксона и синаптических мембран и восстанавливает белки, гликопротеины, ферменты и другие вещества, исчезающие в ходе локального расщепления, экзоцитоза в синаптическую щель и ретроградной миграции к нейрону. Все это происходит благодаря быстрому транспорту, на который не оказывают влияния процессы возбуждения. Транспорт продолжается после блокады потенциалов действия и не повышается при усиленной активности нерва. Аксональный транспорт осуществляется в обоих направлениях; центростремительный ток контролирует, по-видимому, синтез белков в нейроне и играет также роль «сигнала» для хроматолиза после аксотомии. Различные вещества, ферменты, передатчики и макромолекулы передвигаются в аксоне с разной скоростью.

Аксоплазматический транспорт можно зарегистрировать по накоплению веществ после нарушения непрерывности аксона и по наблюдению за продвижением меченых соединений после введения их в нейрон.

Белки, синтезируемые в теле клетки, синаптические медиаторные вещества и низкомолекулярные факторы спускаются по аксону к нервной терминали вместе с клеточными органеллами, в частности митохондриями. Для большинства веществ и органелл обнаружен ретроградный транспорт (по аксону к телу клетки): вирус полиомиелита, вирус герпеса, столбнячный токсин, а также ферменты – пероксидаза хрена, которая широко используется в нейроанатомии в качестве маркиратора. Ретроградный транспорт, видимо, является главным фактором регуляции синтеза белка в клетке. После перерезки аксона через несколько дней в соме начинается хроматолиз, что свидетельствует о нарушении синтеза белка. Быстрый аксонный транспорт зависит от достаточного снабжения метаболической энергии. Возможность транспорта создают микротрубочки диаметром 25 мкм, состоящие из белка тубулина, и некоторые нейрофибриллы, состоящие из белка актина, образующие транспортные нити. Транспортные нити скользят вдоль микротрубочек. При этом они взаимодействуют с выступами микротрубочек, происходит расщепление АТФ, которое и обеспечивает энергию для транспорта. Более медленно транспортируются крупные белки. Но считают, что сам транспортный механизм не является более медленным, однако вещества время от времени попадают в клеточные компартменты, которые не участвуют в транспорте. Медленный ток имеет, по-видимому, также отношение к аксональному росту. Аксоплазматический ток прекращается колхицином, что объясняется влиянием этого вещества на микротрубочки.

Физиология синапсов

Синапс (от греч. synapsis) обозначает соединение, связь – это специализированная зона контакта между нейронами или нейронами и другими возбудимыми образованиями, обеспечивающая передачу возбуждения с сохранением, изменением или исчезновением ее информационного значения. Данный термин был предложен Ч. Шеррингтоном (1897) для обозначения функционального контакта между нейронами. Справедливости ради нужно отметить, что еще в 60-х годах XIX столетия И.М. Сеченов подчеркивал, что вне межклеточной связи нельзя объяснить происхождение даже самых простых рефлексов.

Синапсы различают: 1) по их местоположению; 2) по способу передачи сигналов.

1) По местоположению выделяют синапсы центральные и периферические. Центральные синапсы – это синапсы, которые осуществляют контакт между нейронами в центральной нервной системе. К ним относятся аксо-аксональные синапсы, аксо-дендритические, аксо-соматические, дендро-дендритические (обнаружены гистологически; функциональное значение не вполне ясно). Центральные синапсы классифицируют также по знаку их действия – возбуждающие и тормозные. Кроме того, распространено деление синапсов по тому медиатору (передатчику), который осуществляет посредничество: адренергические синапсы, холинергические синапсы и др.

К периферическим синапсам относят нервно-мышечные, синапсы вегетативных ганглиев (синапсы, образованные преганглионарными и постганглионарными волокнами).

2) По способу передачи синапсы классифицируются как химические и электрические.

Для всех этих образований характерно наличие пресинаптической мембраны, синаптической щели (10-50 нм), постсинаптической мембраны. Пресинаптическая мембрана является мембраной пресинаптического окончания отростка нейрона (чаще всего аксона).

У человека и высших позвоночных животных наибольшее распространение получили химические синапсы. Химические синапсы в пресинаптическом окончании содержат везикулы с медиатором, химическим передатчиком. Ширина синаптической щели в среднем составляет 20 нм. На постсинаптической мембране содержатся рецепторы к данному медиатору, ферменты, разрушающие данный медиатор. Таким образом, постсинаптическая мембрана является рецепторной частью синапса, ею может быть специфически дифференцированный участок дендрита, тела нейрона и его аксона.

В электрическом синапсе не вырабатывается медиатор. Синаптическая щель несколько меньше, чем у химического синапса (2-4 нм). В синаптической щели между пре- и постсинаптической мембранами имеются белковые мостики-каналы шириной 1-2 нм, где движутся ионы и небольшие молекулы. Это способствует более низкому, чем у пресинаптической мембраны, сопротивлению постсинаптической мембраны. Поэтому возбуждение от пресинаптической мембраны к постсинаптической мембране в электрических синапсах передается электрическим путем, т.е. осуществляется эфаптическая передача. В отличие от химических синапсов, электрические синапсы отличаются большей скоростью проведения возбуждения, высокой надежностью передачи, возможностью двустороннего проведения.

Электрические синапсы обнаружены у крыс в вестибулярном ядре продолговатого мозга, в структурах дыхательного центра продолговатого мозга (при этом обсуждается их роль в механизмах автоматического ритмогенеза дыхания); у кошки электрические синапсы обнаружены между нейронами нижних олив, в структурах таламуса, между фоторецепторами сетчатки и горизонтальными клетками у рыб и др.

Но все-таки наибольшее распространение в процессе эволюции получили химические синапсы. Это обусловлено рядом свойств этих образований, которые имеют большое значение в организации деятельности нервной системы (рис. 1.4).

Рис. 1.4.

Синапс (рисунок взят из книги: Мозг / под ред. П.В. Симонова. М.: Мир, 1984)

⇐ Предыдущая3Следующая ⇒

Рекомендуемые страницы:

Функционирование нервной системы

Нормальное функционирование нервной системы зависит от передачи импульса и химических процессов в синапсе. Не менее важную роль играет создание нервных связей. Способность к обучению присутствует у людей именно благодаря возможности организма формировать новые соединения между нейронами.

аксоны и дендриты

Любое новое действие на стадии изучения требует постоянного контроля со стороны мозга. По мере его освоения образуются новые нейронные связи, со временем действие начинает выполняться автоматически (например, умение ходить).

Дендриты – это передающие волокна, составляющие примерно треть всей нервной ткани организма. Благодаря их взаимодействию с аксонами люди имеют возможность обучаться.

Аксон
Blausen 0657 MultipolarNeuron.png

Аксон многополярного нейрона

Идентификаторы
MeSH D001369
Анатомическая терминология

[редактировать в Викиданных ]

An аксон (от греч. ἄξων áxōn, ось), или нервное волокно (или же нерв волокно: видеть орфографические различия ), представляет собой длинный тонкий выступ нервной клетки, или нейрон, у позвоночных, который обычно проводит электрические импульсы, известные как потенциалы действия подальше от тело нервной клетки. Функция аксона — передавать информацию различным нейронам, мышцам и железам. В определенных сенсорные нейроны (псевдоуниполярные нейроны ), например аксоны прикосновения и тепла, аксоны называются афферентные нервные волокна и электрический импульс проходит по ним от периферия к телу клетки и от тела клетки к спинному мозгу по другой ветви того же аксона. Дисфункция аксонов является причиной многих наследственных и приобретенных неврологических расстройств, которые могут поражать как периферические, так и центральные нейроны. Нервные волокна классифицированный на три типа — нервные волокна группы А, нервные волокна группы B, и нервные волокна группы C. Группы A и B являются миелинизированный, и группа C немиелинизированы. Эти группы включают как сенсорные волокна, так и двигательные волокна. Другая классификация группирует только сенсорные волокна как Тип I, Тип II, Тип III и Тип IV.

Аксон — это один из двух типов цитоплазматический выступы из тела клетки нейрона; другой тип — это дендрит. Аксоны отличаются от дендритов несколькими особенностями, включая форму (дендриты часто сужаются, в то время как аксоны обычно имеют постоянный радиус), длину (дендриты ограничены небольшой областью вокруг тела клетки, в то время как аксоны могут быть намного длиннее) и функцию (дендриты получают сигналы, тогда как аксоны передают их). Некоторые типы нейронов не имеют аксона и передают сигналы от своих дендритов. У некоторых видов аксоны могут исходить из дендритов, известных как дендриты, несущие аксоны.[1] Ни у одного нейрона никогда не бывает более одного аксона; однако у беспозвоночных, таких как насекомые или пиявки, аксон иногда состоит из нескольких областей, которые функционируют более или менее независимо друг от друга.[2]

Аксоны покрыты мембраной, известной как аксолемма; цитоплазма аксона называется аксоплазма. Большинство аксонов разветвляются, в некоторых случаях очень обильно. Концевые ветви аксона называются телодендрия. Распухший конец телодендрона известен как терминал аксона который присоединяется к дендрону или телу клетки другого нейрона, образуя синаптическое соединение. Аксоны контактируют с другими клетками — обычно с другими нейронами, но иногда с клетками мышц или желез — в соединениях, называемых синапсы. В некоторых случаях аксон одного нейрона может образовывать синапс с дендритами того же нейрона, что приводит к autapse. В синапсе мембрана аксона близко примыкает к мембране клетки-мишени, а специальные молекулярные структуры служат для передачи электрических или электрохимических сигналов через промежуток. Некоторые синаптические соединения появляются вдоль аксона по мере его расширения — они называются мимоходом («попутно») синапсов и может быть сотнями или даже тысячами вдоль одного аксона.[3] Другие синапсы выглядят как терминалы на концах аксональных ветвей.

Отдельный аксон со всеми его ветвями, взятыми вместе, может иннервировать несколько частей мозга и генерируют тысячи синаптических окончаний. Связка аксонов делает нервный тракт в Центральная нервная система,[4] и пучок в периферическая нервная система. В плацентарные млекопитающие самый большой белое вещество тракт в головном мозге мозолистое тело, образованный примерно из 200 миллионов аксонов в человеческий мозг.[4]

Анатомия

Типичный миелинизированный аксон

Аксоны — это основные линии передачи нервная система, и как пучки они образуют нервы. Некоторые аксоны могут достигать одного метра и более, а другие — всего лишь один миллиметр. Самые длинные аксоны в человеческом теле — аксоны седалищный нерв, которые идут от основания спинной мозг к большому пальцу каждой стопы. Диаметр аксонов также варьируется. Большинство отдельных аксонов микроскопические в диаметре (обычно около одного микрометр (мкм) в поперечнике). Самые большие аксоны млекопитающих могут достигать в диаметре до 20 мкм. В гигантский аксон кальмара, который специализируется на очень быстром проведении сигналов, близок к 1 миллиметр в диаметре, размером с грифель карандаша. Количество аксональных телодендрий (разветвленных структур на конце аксона) также может отличаться от одного нервного волокна к другому. Аксоны в Центральная нервная система (ЦНС) обычно показывают несколько телодендрий с множеством синаптических конечных точек. Для сравнения: гранулярная клетка мозжечка аксон характеризуется одним Т-образным узлом ветви, от которого два параллельные волокна продлевать. Продуманное ветвление позволяет одновременно передавать сообщения большому количеству целевых нейронов в одной области мозга.

Есть два типа аксонов в нервная система: миелинизированный и немиелинизированный аксоны.[5] Миелин представляет собой слой изолирующего жирового вещества, который образован двумя типами глиальные клетки Клетки Шванна и олигодендроциты. в периферическая нервная система Шванновские клетки образуют миелиновую оболочку миелинизированного аксона. в Центральная нервная система олигодендроциты образуют изолирующий миелин. Вдоль миелинизированных нервных волокон пробелы в миелиновой оболочке, известные как узлы Ранвье происходят через равные промежутки времени. Миелинизация обеспечивает особенно быстрый режим распространения электрических импульсов, называемый скачкообразное проведение.

Миелинизированные аксоны из корковые нейроны образуют основную часть нервной ткани, называемой белое вещество в мозгу. Миелин придает белому цвету ткань в отличие от серое вещество коры головного мозга, содержащей тела нейрональных клеток. Аналогичное расположение можно увидеть на мозжечок. Связки миелинизированных аксонов составляют нервные пути в ЦНС. Там, где эти тракты пересекают среднюю линию мозга и соединяют противоположные области, они называются комиссур. Самый крупный из них — мозолистое тело что соединяет два полушария головного мозга, а это около 20 миллионов аксонов.[4]

Видно, что структура нейрона состоит из двух отдельных функциональных областей или компартментов — тела клетки вместе с дендритами в качестве одной области и аксональной области в качестве другой.

Аксональная область

Аксональная область или компартмент включает бугорок аксона, начальный сегмент, остальную часть аксона и телодендрии аксона, а также терминалы аксона. Он также включает миелиновую оболочку. В Тела Nissl которые продуцируют нейрональные белки, отсутствуют в аксональной области.[3] Белки, необходимые для роста аксона и удаления отходов жизнедеятельности, нуждаются в транспортном каркасе. Этот аксональный транспорт обеспечивается в аксоплазме за счет расположения микротрубочки и промежуточные нити известный как нейрофиламенты.

Аксонный бугорок

Деталь, показывающая микротрубочки на бугорке аксона и начальном сегменте.

В аксональный бугорок это область, образованная клеточным телом нейрона по мере того, как она расширяется, чтобы стать аксоном. Он предшествует начальному сегменту. Полученные потенциалы действия, которые подведены в нейроне передаются на бугорок аксона для генерации потенциала действия из начального сегмента.

Начальный сегмент

В аксональный начальный сегмент (AIS) представляет собой структурно и функционально отдельный микродомен аксона.[6][7] Одна из функций начального сегмента — отделить основную часть аксона от остальной части нейрона; другая функция — помочь инициировать потенциалы действия.[8] Обе эти функции поддерживают нейрон полярность ячейки, в котором дендриты (а в некоторых случаях сома ) нейрона получают входные сигналы в базальной области, а в апикальной области аксон нейрона обеспечивает выходные сигналы.[9]

Начальный сегмент аксона немиелинизирован и содержит специализированный комплекс белков. Его длина составляет примерно от 20 до 60 мкм, и он функционирует как место инициации потенциала действия.[10][11] Как положение на аксоне, так и длина AIS могут изменяться, показывая степень пластичности, которая может точно настроить вывод нейронов.[10][12] Более длинный AIS связан с большей возбудимостью.[12] Пластичность также проявляется в способности AIS изменять свое распределение и поддерживать активность нейронных схем на постоянном уровне.[13]

AIS узкоспециализирована для быстрого проведения нервные импульсы. Это достигается за счет высокой концентрации напряжение-управляемые натриевые каналы в начальном сегменте, где возникает потенциал действия.[13] Ионные каналы сопровождаются большим количеством молекулы клеточной адгезии и каркасные белки, которые прикрепляют их к цитоскелету.[10] Взаимодействие с Анкирин Г важны, так как это главный организатор в САИ.[10]

Аксональный транспорт

В аксоплазма эквивалентен цитоплазма в клетка. Микротрубочки образуются в аксоплазме на бугорке аксона. Они расположены по длине аксона в перекрывающихся участках и все направлены в одном направлении — к окончанию аксона.[14] Об этом говорят положительные окончания микротрубочек. Такое перекрывающееся расположение обеспечивает маршруты транспортировки различных материалов из тела клетки.[14] Исследования аксоплазмы показали движение многочисленных пузырьков всех размеров, которые можно увидеть вдоль цитоскелетных филаментов — микротрубочек и нейрофиламенты, в обоих направлениях между аксоном и его окончаниями и телом клетки.

Исходящий антероградный транспорт из тела клетки по аксону переносит митохондрии и мембранные белки, необходимые для роста, к концу аксона. Входящий ретроградный транспорт переносит отходы клетки от терминала аксона к телу клетки.[15] Исходящие и входящие треки используют разные наборы моторные белки.[14] Исходящий транспорт обеспечивает кинезин, а входящий обратный трафик обеспечивается динеин. Динеин направлен на минус-конец.[15] Существует множество форм моторных белков кинезина и динеина, и считается, что каждая из них несет свой груз.[14] Исследования транспорта в аксоне привели к названию кинезина.[14]

Миелинизация

ТЕМ миелинизированного аксона в поперечном сечении.

В нервной системе аксоны могут быть миелинизированный, или немиелинизированные. Это обеспечение изолирующего слоя, называемого миелиновой оболочкой. Миелиновая мембрана уникальна своим относительно высоким соотношением липидов к белку.[16]

В периферической нервной системе аксоны миелинизируются глиальные клетки известный как Клетки Шванна. В центральной нервной системе миелиновую оболочку представляют глиальные клетки другого типа, олигодендроцит. Клетки Шванна миелинизируют единственный аксон. Олигодендроцит может миелинизировать до 50 аксонов.[17]

Состав миелина у этих двух типов разный. В ЦНС основным белком миелина является протеолипидный белок, а в ПНС это основной белок миелина.

Узлы Ранвье

Узлы Ранвье (также известен как щели миелиновой оболочки) — короткие немиелинизированные сегменты миелинизированный аксон, которые находятся периодически вкраплениями между сегментами миелиновой оболочки. Следовательно, в точке узла Ранвье аксон уменьшается в диаметре.[18] Эти узлы являются областями, где могут быть созданы потенциалы действия. В скачкообразное проведение электрические токи, возникающие в каждом узле Ранвье, передаются с небольшим затуханием к следующему узлу в линии, где они остаются достаточно сильными, чтобы генерировать другой потенциал действия. Таким образом, в миелинизированном аксоне потенциалы действия эффективно «прыгают» от узла к узлу, минуя миелинизированные участки между ними, в результате чего скорость распространения намного выше, чем может выдержать даже самый быстрый немиелинизированный аксон.

Терминалы Axon

Аксон может делиться на множество ветвей, называемых телодендриями (греч. Конец дерева). В конце каждого телодендрон является аксонный терминал (также называемый синаптическим бутоном или терминальным бутоном). Терминалы Axon содержат синаптические везикулы которые хранят нейротрансмиттер для выпуска в синапс. Это делает возможными множественные синаптические связи с другими нейронами. Иногда аксон нейрона может синапсировать с дендритами того же нейрона, когда он известен как autapse.

Потенциалы действия

Структура типового химический синапс

Иллюстрированный химический синапс

Постсинаптический
плотность

Напряжение-
закрытый Ca++
канал

Синаптический
везикул

Нейротрансмиттер
транспортер

Рецептор

Нейротрансмиттер

Аксон терминал

Синаптическая щель

Дендрит

Большинство аксонов несут сигналы в виде потенциалы действия, которые представляют собой дискретные электрохимические импульсы, которые быстро проходят по аксону, начиная с тела клетки и заканчивая в точках, где аксон производит синаптический контакт с клетками-мишенями. Определяющей характеристикой потенциала действия является то, что он действует по принципу «все или ничего» — каждый потенциал действия, который генерирует аксон, по существу имеет одинаковый размер и форму. Эта характеристика «все или ничего» позволяет передавать потенциалы действия от одного конца длинного аксона к другому без какого-либо уменьшения размера. Однако есть некоторые типы нейронов с короткими аксонами, которые несут ступенчатые электрохимические сигналы переменной амплитуды.

Когда потенциал действия достигает пресинаптического терминала, он активирует процесс синаптической передачи. Первый шаг — это быстрое открытие каналов для ионов кальция в мембране аксона, позволяя ионам кальция проходить внутрь через мембрану. Возникающее в результате повышение концентрации внутриклеточного кальция вызывает синаптические везикулы (крошечные контейнеры, окруженные липидной мембраной), заполненные нейротрансмиттер химикат, чтобы сливаться с мембраной аксона и выводить их содержимое во внеклеточное пространство. Нейромедиатор высвобождается из пресинаптического нерва через экзоцитоз. Затем химический нейротрансмиттер диффундирует к рецепторам, расположенным на мембране клетки-мишени. Нейромедиатор связывается с этими рецепторами и активирует их. В зависимости от типа активируемых рецепторов действие на клетку-мишень может заключаться в возбуждении клетки-мишени, ее подавлении или каким-либо образом изменяющем ее метаболизм. Вся эта последовательность событий часто происходит менее чем за тысячную долю секунды. После этого внутри пресинаптического терминала новый набор везикул перемещается в положение рядом с мембраной, готовых к высвобождению при достижении следующего потенциала действия. Потенциал действия — это последний электрический шаг в интеграции синаптических сообщений в масштабе нейрона.[5]

(A) пирамидная ячейка, интернейрон и форма волны короткой длительности (Axon), наложение трех средних форм волны;
(B) Средняя и стандартная ошибка времени прохождения пика для интернейронов пирамидных клеток и предполагаемых аксонов;
(C) График разброса отношения сигнал / шум для отдельных единиц от времени пика для аксонов, пирамидных клеток (PYR) и интернейронов (INT).

Внеклеточные записи потенциал действия распространение в аксонах было продемонстрировано у свободно перемещающихся животных. В то время как внеклеточные соматические потенциалы действия использовались для изучения клеточной активности у свободно перемещающихся животных, таких как разместить клетки, аксональная активность в обоих белый и серое вещество также могут быть записаны. Внеклеточные записи распространения потенциала действия аксона отличаются от соматических потенциалов действия по трем причинам: 1. Сигнал имеет более короткую продолжительность пика и спада (~ 150 мкс), чем у пирамидных клеток (~ 500 мкс) или интернейронов (~ 250 мкс). 2. Изменение напряжения трехфазное. 3. Активность, записанная на тетроде, видна только на одном из четырех проводов записи. В записях от свободно движущихся крыс аксональные сигналы были изолированы в трактах белого вещества, включая альвеус и мозолистое тело, а также серое вещество гиппокампа.[19]

Фактически, поколение потенциалы действия in vivo носит последовательный характер, и эти последовательные всплески составляют цифровые коды в нейроны. Хотя предыдущие исследования указывают на аксональное происхождение одиночного спайка, вызванного кратковременными импульсами, физиологические сигналы in vivo запускают инициирование последовательных спайков в телах клеток нейронов.[20][21]

В дополнение к распространению потенциалов действия к окончанию аксона, аксон способен усиливать потенциалы действия, что гарантирует безопасное распространение последовательных потенциалов действия к окончанию аксона. Что касается молекулярных механизмов, напряжение-управляемые натриевые каналы в аксонах обладают нижними порог и короче период отражения в ответ на кратковременные импульсы.[22]

Развитие и рост

Разработка

Развитие аксона к его цели — один из шести основных этапов в общей развитие нервной системы.[23] Исследования проведены на культивированных гиппокамп нейроны предполагают, что нейроны изначально производят несколько невриты которые эквивалентны, но только одному из этих нейритов суждено стать аксоном.[24] Неясно, предшествует ли спецификация аксона удлинению аксона или наоборот,[25] хотя недавние свидетельства указывают на последнее. Если разрезать не полностью развитый аксон, полярность может измениться, и другие нейриты потенциально могут стать аксоном. Это изменение полярности происходит только в том случае, если аксон сокращен как минимум на 10 мкм короче, чем другие нейриты. После того, как разрез будет сделан, самый длинный нейрит станет будущим аксоном, а все остальные нейриты, включая исходный аксон, превратятся в дендриты.[26] Воздействие внешней силы на нейрит, заставляющее его удлиниться, превращает его в аксон.[27] Тем не менее, развитие аксонов достигается за счет сложного взаимодействия между внеклеточной передачей сигналов, внутриклеточной передачей сигналов и цитоскелет динамика.

Внеклеточные сигналы, распространяющиеся через внеклеточный матрикс окружающие нейроны играют важную роль в развитии аксонов.[28] Эти сигнальные молекулы включают белки, нейротрофические факторы, внеклеточный матрикс и молекулы адгезии. Нетрин (также известный как UNC-6) секретируемый белок, участвующий в образовании аксонов. Когда UNC-5 рецептор нетрина мутирован, несколько нейритов нерегулярно проецируются из нейронов, и, наконец, один аксон выходит вперед.[29][30][31][32] Нейротрофические факторы — фактор роста нервов (NGF), нейротрофический фактор головного мозга (BDNF) и нейротрофин-3 (NTF3) также участвуют в развитии аксонов и связываются с Рецепторы Trk.[33]

В ганглиозид -превращающий фермент ганглиозид плазматической мембраны сиалидаза (PMGS), который участвует в активации TrkA на кончике нейтритов, требуется для удлинения аксонов. PMGS асимметрично распределяется по кончику нейрита, которому суждено стать будущим аксоном.[34]

Внутриклеточная передача сигналов

Во время развития аксонов активность PI3K увеличивается на конце предназначенного аксона. Нарушение активности PI3K тормозит развитие аксонов. Активация PI3K приводит к образованию фосфатидилинозит (3,4,5) -трисфосфат (PtdIns), которые могут вызывать значительное удлинение нейрита, превращая его в аксон. Таким образом, чрезмерное проявление фосфатазы что дефосфорилирование PtdIns приводит к нарушению поляризации.[28]

Цитоскелетная динамика

Неврит с самым низким актин содержимое филамента станет аксоном. Концентрация PGMS и f-актин содержание обратно коррелировано; когда PGMS становится обогащенным на кончике нейрита, содержание в нем f-актина существенно снижается.[34] Кроме того, воздействие препаратов, деполимеризующих актин, и токсина B (который инактивирует Rho-сигнализация ) вызывает образование множественных аксонов. Следовательно, разрыв актиновой сети в конусе роста будет способствовать превращению ее нейрита в аксон.[35]

Рост

Аксон девятидневной мыши с видимым конусом роста

Растущие аксоны перемещаются в окружающей среде через конус роста, который находится на кончике аксона. Конус роста имеет широкое пластинчатое расширение, называемое ламеллиподиум которые содержат выступы, называемые филоподия. Филоподии — это механизм, с помощью которого весь процесс прикрепляется к поверхностям и исследует окружающую среду. Актин играет важную роль в мобильности этой системы. Среды с высоким уровнем молекулы клеточной адгезии (CAM) создают идеальную среду для роста аксонов. Похоже, что это обеспечивает «липкую» поверхность для роста аксонов. Примеры CAM, специфичных для нейронных систем, включают: N-CAM, ТЕГ-1 — аксональный гликопротеин —[36]-и МАГ, все из которых являются частью иммуноглобулин надсемейство. Другой набор молекул называется внеклеточный матрикс -молекулы адгезии также обеспечивают липкий субстрат для роста аксонов. Примеры этих молекул включают ламинин, фибронектин, тенасцин, и перлекан. Некоторые из них поверхностно связаны с клетками и, таким образом, действуют как аттрактанты или репелленты ближнего действия. Другие являются диффундирующими лигандами и, следовательно, могут иметь эффекты длительного действия.

Ячейки называются клетки-указатели помочь в руководство роста аксонов нейронов. Эти клетки, которые помогают управление аксоном, как правило, другие нейроны, которые иногда незрелые. Когда аксон завершит свой рост в месте его соединения с мишенью, диаметр аксона может увеличиться до пяти раз, в зависимости от скорость проведения требуется.[37]

В ходе исследований также было обнаружено, что если аксоны нейрона были повреждены, то до тех пор, пока сома (тело клетки нейрон ) не повреждается, аксоны регенерируют и восстанавливают синаптические связи с нейронами с помощью клетки-указатели. Это также называется нейрорегенерация.[38]

Ного-А это тип компонента, ингибирующего рост нейритов, который присутствует в миелиновых мембранах центральной нервной системы (обнаружен в аксоне). Он играет решающую роль в ограничении регенерации аксонов в центральной нервной системе взрослых млекопитающих. В недавних исследованиях, если Nogo-A заблокирован и нейтрализован, можно вызвать регенерацию аксонов на большом расстоянии, что приводит к усилению функционального восстановления у крыс и спинного мозга мыши. Этого еще предстоит сделать на людях.[39] Недавнее исследование также показало, что макрофаги активируется специфическим воспалительным путем, активируемым Дектин-1 рецепторы способны способствовать восстановлению аксонов, однако также вызывают нейротоксичность в нейроне.[40]

Регулировка длины

Аксоны в значительной степени различаются по длине от нескольких микрометров до метров у некоторых животных. Это подчеркивает, что должен существовать механизм регулирования длины клетки, позволяющий нейронам ощущать длину своих аксонов и соответственно контролировать их рост. Было обнаружено, что моторные белки играют важную роль в регулировании длины аксонов.[41] Основываясь на этом наблюдении, исследователи разработали четкую модель роста аксонов, описывающую, как моторные белки могут влиять на длину аксона на молекулярном уровне.[42][43][44][45] Эти исследования предполагают, что моторные белки переносят сигнальные молекулы от сомы к конусу роста и наоборот, концентрация которых колеблется во времени с частотой, зависящей от длины.

Классификация

Аксоны нейронов человека периферическая нервная система могут быть классифицированы по их физическим характеристикам и свойствам проводимости сигнала. Известно, что аксоны имеют разную толщину (от 0,1 до 20 мкм).[3] и считалось, что эти различия связаны со скоростью, с которой потенциал действия может перемещаться по аксону — его скорость проводимости. Эрлангер и Гассер доказали эту гипотезу и идентифицировали несколько типов нервных волокон, установив связь между диаметром аксона и его скорость нервной проводимости. Они опубликовали свои открытия в 1941 году, дав первую классификацию аксонов.

Аксоны подразделяются на две системы. Первый, введенный Эрлангером и Гассером, сгруппировал волокна в три основные группы, используя буквы A, B и C. группа А, группа B, и группа C включают оба сенсорных волокна (афференты ) и двигательные волокна (эфференты ). Первая группа A была разделена на альфа, бета, гамма и дельта волокна — Aα, Aβ, Aγ и Aδ. Моторные нейроны различных моторных волокон были нижние двигательные нейроны – альфа двигательный нейрон, бета мотонейрон, и гамма мотонейрон с нервными волокнами Aα, Aβ и Aγ соответственно.

Позже другие исследователи обнаружили две группы волокон Aa, которые были сенсорными волокнами. Затем они были введены в систему, которая включала только сенсорные волокна (хотя некоторые из них были смешанными нервами, а также двигательными волокнами). Эта система называет сенсорные группы Типами и использует римские цифры: Тип Ia, Тип Ib, Тип II, Тип III и Тип IV.

Мотор

Нижние двигательные нейроны имеют два вида волокон:

Типы моторных волокон

Тип Эрлангер-Гассер
Классификация
Диаметр
(мкм)
Миелин Проведение
скорость (м / с)
Связанный мышечные волокна
α 13-20 да 80–120 Экстрафузионные мышечные волокна
β
γ 5-8 да 4–24[46][47] Внутрифузионные мышечные волокна

Сенсорный

Разные Рецепторы чувств иннервируют разные типы нервных волокон. Проприоцепторы иннервируются сенсорными волокнами типа Ia, Ib и II, механорецепторы сенсорными волокнами II и III типов и ноцицепторы и терморецепторы сенсорными волокнами III и IV типа.

Типы сенсорных волокон

Тип Эрлангер-Гассер
Классификация
Диаметр
(мкм)
Миелин Проведение
скорость (м / с)
Связанный Рецепторы чувств Проприоцепторы Механоцепторы Ноцицепторы и
терморецепторы
Я 13-20 да 80–120 Первичные рецепторы мышечное веретено (аннулоспиральное окончание)
Ib 13-20 да 80–120 Орган сухожилия Гольджи
II 6-12 да 33–75 Вторичные рецепторы мышечное веретено (окончание цветочно-спрей).
Все кожные механорецепторы
III 1-5 Тонкий 3–30 Свободные нервные окончания прикосновения и давления
Ноцицепторы из боковой спиноталамический тракт
Холодный терморецепторы
IV C 0.2-1.5 Нет 0.5-2.0 Ноцицепторы из передний спиноталамический тракт
Рецепторы тепла

Автономный

В автономная нервная система имеет два вида периферических волокон:

Типы волокон

Тип Эрлангер-Гассер
Классификация
Диаметр
(мкм)
Миелин[48] Проведение
скорость (м / с)
преганглионарные волокна B 1–5 да 3–15
постганглионарные волокна C 0.2–1.5 Нет 0.5–2.0

Клиническое значение

В порядке степени тяжести повреждение нерва можно описать как неврапраксия, аксонотмезис, или же невротмезис.Сотрясение считается легкой формой диффузное повреждение аксонов.[49] Аксональное повреждение также может вызвать центральный хроматолиз. Нарушение функции аксонов нервной системы является одной из основных причин многих наследственных заболеваний. неврологические расстройства которые влияют как на периферические, так и на центральные нейроны.[5]

Когда аксон раздавлен, активный процесс дегенерация аксонов происходит в части аксона, наиболее удаленной от тела клетки. Эта дегенерация происходит быстро после травмы, когда часть аксона блокируется мембранами и разрушается макрофагами. Это известно как Валлеровское вырождение.[50] Отмирание аксона также может иметь место при многих нейродегенеративных заболеваниях, особенно при нарушении транспорта аксонов, это известно как дегенерация, подобная валлеровской.[51] Исследования показывают, что дегенерация происходит в результате действия аксонального белка. NMNAT2, будучи не в состоянии достичь всего аксона.[52]

Демиелинизация аксонов вызывает множество неврологических симптомов, обнаруженных при заболевании рассеянный склероз.

Дисмиелинизация это аномальное образование миелиновой оболочки. Это связано с несколькими лейкодистрофии, а также в шизофрения.[53][54][55]

Суровый травматическое повреждение мозга может привести к обширным поражениям нервных путей, повреждая аксоны в состоянии, известном как диффузное повреждение аксонов. Это может привести к стойкое вегетативное состояние.[56] Это было показано в исследованиях на крыса такое повреждение аксонов в результате единичного легкого черепно-мозгового повреждения может оставить восприимчивость к дальнейшему повреждению после повторных легких черепно-мозговых травм.[57]

А нервный проводник является искусственным средством направления роста аксонов, чтобы нейрорегенерация, и является одним из многих методов лечения, используемых для различных видов повреждение нерва.

История

Немецкий анатом Отто Фридрих Карл Дайтерс обычно приписывают открытие аксона, отличив его от дендритов.[5] Швейцарский Рюдольф Альберт фон Кёлликер и немецкий Роберт Ремак были первыми, кто идентифицировал и охарактеризовал начальный сегмент аксона. Келликер назвал аксон в 1896 году.[58] Луи-Антуан Ранвье был первым, кто описал бреши или узлы, обнаруженные на аксонах, и за этот вклад эти аксональные особенности теперь обычно называют узлы Ранвье. Сантьяго Рамон-и-Кахаль, испанский анатом, предположил, что аксоны были выходными компонентами нейронов, описывая их функции.[5] Джозеф Эрлангер и Герберт Гассер ранее разработали систему классификации периферических нервных волокон,[59] на основе скорости аксональной проводимости, миелинизация, размер волокна и т. д. Алан Ходжкин и Эндрю Хаксли также использовали гигантский аксон кальмара (1939), а к 1952 году они получили полное количественное описание ионной основы потенциал действия, что привело к формулировке Модель Ходжкина – Хаксли. Ходжкин и Хаксли были награждены совместно Нобелевская премия для этой работы в 1963 году. Формулы, описывающие аксональную проводимость, были распространены на позвоночных в уравнениях Франкенхойзера-Хаксли. Понимание биохимической основы распространения потенциала действия продвинулось дальше и включает много деталей об отдельных ионные каналы.

Другие животные

Аксоны в беспозвоночные были широко изучены. В Прибрежный кальмар, часто используется как модельный организм имеет самый длинный из известных аксонов.[60] В Гигантский кальмар имеет самый большой аксон известен. Его размер варьируется от половины (обычно) до одного миллиметра в диаметре и используется для управления его реактивный двигатель система. Самая быстрая зарегистрированная скорость проводимости 210 м / с обнаружена в заключенных в оболочку аксонах некоторых пелагических Креветки Penaeid[61] и обычный диапазон составляет от 90 до 200 м / с.[62] (ср 100–120 м / с для аксона самого быстрого миелинизированного позвоночного.)

В других случаях, как показали исследования на крысах, аксон происходит от дендрита; такие аксоны, как говорят, имеют «дендритное происхождение». Некоторые аксоны с дендритным происхождением аналогичным образом имеют «проксимальный» начальный сегмент, который начинается непосредственно в источнике аксона, в то время как другие имеют «дистальный» начальный сегмент, заметно отделенный от источника аксона.[63] У многих видов некоторые из нейронов имеют аксоны, которые исходят из дендрита, а не из тела клетки, и они известны как дендриты, несущие аксоны.[1] Во многих случаях аксон берет свое начало от бугорка аксона на соме; такие аксоны, как говорят, имеют «соматическое происхождение». Некоторые аксоны соматического происхождения имеют «проксимальный» начальный сегмент, прилегающий к бугорку аксона, в то время как другие имеют «дистальный» начальный сегмент, отделенный от сомы протяженным бугорком аксона.[63]

Смотрите также

  • Электрофизиология
  • Ганглионарное возвышение
  • Гигантская аксональная нейропатия
  • Нейрональная трассировка
  • Пионерский аксон

Рекомендации

  1. ^ а б Triarhou LC (2014). «Аксоны, исходящие из дендритов: филогенетические последствия с оттенками Кахаля». Границы нейроанатомии. 8: 133. Дои:10.3389 / fnana.2014.00133. ЧВК  4235383. PMID  25477788.
  2. ^ Яу К.В. (декабрь 1976 г.). «Рецептивные поля, геометрия и проводящий блок сенсорных нейронов центральной нервной системы пиявки». Журнал физиологии. 263 (3): 513–38. Дои:10.1113 / jphysiol.1976.sp011643. ЧВК  1307715. PMID  1018277.
  3. ^ а б c Сквайр, Ларри (2013). Фундаментальная нейробиология (4-е изд.). Амстердам: Elsevier / Academic Press. С. 61–65. ISBN  978-0-12-385-870-2.
  4. ^ а б c Людерс Э., Томпсон П.М., Тога А.В. (август 2010 г.). «Развитие мозолистого тела в мозгу здорового человека». Журнал неврологии. 30 (33): 10985–90. Дои:10.1523 / JNEUROSCI.5122-09.2010. ЧВК  3197828. PMID  20720105.
  5. ^ а б c d е Дебанн Д., Кампанак Е., Бяловас А., Карлье Е., Алькарас Г. (апрель 2011 г.). «Аксонная физиология» (PDF). Физиологические обзоры. 91 (2): 555–602. Дои:10.1152 / Physrev.00048.2009. PMID  21527732. S2CID  13916255.
  6. ^ Нельсон А.Д., Дженкинс П.М. (2017). «Аксональные мембраны и их домены: сборка и функция начального сегмента аксона и узла Ранвье». Границы клеточной неврологии. 11: 136. Дои:10.3389 / fncel.2017.00136. ЧВК  5422562. PMID  28536506.
  7. ^ Летерье С., Клерк Н., Руэда-Борони Ф, Монтерсино А., Дарджент Б., Кастетс Ф (2017). «Мембранные партнеры Ankyrin G стимулируют создание и поддержание начального сегмента Axon». Границы клеточной неврологии. 11: 6. Дои:10.3389 / fncel.2017.00006. ЧВК  5266712. PMID  28184187.
  8. ^ Летерье С (февраль 2018 г.). «Начальный сегмент аксона: обновленная точка зрения». Журнал неврологии. 38 (9): 2135–2145. Дои:10.1523 / jneurosci.1922-17.2018. ЧВК  6596274. PMID  29378864.
  9. ^ Расбанд М.Н. (август 2010 г.). «Начальный сегмент аксона и поддержание полярности нейронов». Обзоры природы. Неврология. 11 (8): 552–62. Дои:10.1038 / nrn2852. PMID  20631711. S2CID  23996233.
  10. ^ а б c d Джонс С.Л., Свиткина Т.М. (2016). «Цитоскелет начального сегмента аксона: архитектура, развитие и роль в полярности нейронов». Нейронная пластичность. 2016: 6808293. Дои:10.1155/2016/6808293. ЧВК  4967436. PMID  27493806.
  11. ^ Кларк Б.Д., Голдберг Е.М., Руди Б. (декабрь 2009 г.). «Электрогенная настройка начального сегмента аксона». Нейробиолог. 15 (6): 651–68. Дои:10.1177/1073858409341973. ЧВК  2951114. PMID  20007821.
  12. ^ а б Ямада Р., Куба Х (2016). «Структурная и функциональная пластичность в начальном сегменте аксона». Границы клеточной неврологии. 10: 250. Дои:10.3389 / fncel.2016.00250. ЧВК  5078684. PMID  27826229.
  13. ^ а б Сусуки К., Куба Х (март 2016 г.). «Активно-зависимая регуляция возбудимых аксональных доменов». Журнал физиологических наук. 66 (2): 99–104. Дои:10.1007 / s12576-015-0413-4. PMID  26464228. S2CID  18862030.
  14. ^ а б c d е Альбертс Б. (2004). Essential Cell Biology: введение в молекулярную биологию клетки (2-е изд.). Нью-Йорк: Гарленд. стр.584–587. ISBN  978-0-8153-3481-1.
  15. ^ а б Альбертс Б. (2002). Молекулярная биология клетки (4-е изд.). Нью-Йорк: Гарленд. С. 979–981. ISBN  978-0-8153-4072-0.
  16. ^ Озген, Н; Барон, W; Hoekstra, D; Кахья, Н. (сентябрь 2016 г.). «Динамика олигодендроглиальной мембраны в связи с биогенезом миелина». Клеточные и молекулярные науки о жизни. 73 (17): 3291–310. Дои:10.1007 / s00018-016-2228-8. ЧВК  4967101. PMID  27141942.
  17. ^ Сэдлер, Т. (2010). Медицинская эмбриология Лангмана (11-е изд.). Филадельфия: Липпинкотт Уильям и Уилкинс. п.300. ISBN  978-0-7817-9069-7.
  18. ^ Гесс А., Янг Дж. З. (ноябрь 1952 г.). «Узлы Ранвье». Труды Лондонского королевского общества. Серия B, Биологические науки. Серия Б. 140 (900): 301–20. Bibcode:1952RSPSB.140..301H. Дои:10.1098 / rspb.1952.0063. JSTOR  82721. PMID  13003931. S2CID  11963512.
  19. ^ Роббинс А.А., Фокс С.Е., Холмс Г.Л., Скотт Р.К., Барри Дж. М. (ноябрь 2013 г.). «Кратковременные сигналы, записанные внеклеточно у свободно движущихся крыс, представляют активность аксонов». Границы в нейронных цепях. 7 (181): 181. Дои:10.3389 / fncir.2013.00181. ЧВК  3831546. PMID  24348338.
  20. ^ Rongjing Ge, Hao Qian и Jin-Hui Wang * (2011) Molecular Brain 4 (19), 1 ~ 11
  21. ^ Rongjing Ge, Hao Qian, Na Chen и Jin-Hui Wang * (2014) Molecular Brain 7 (26): 1-16
  22. ^ Чен Н, Ю Дж, Цянь Х, Ге Р, Ван Дж Х (июль 2010 г.). «Аксоны усиливают соматические неполные спайки до однородных амплитуд в пирамидных нейронах коры головного мозга мышей». PLOS ONE. 5 (7): e11868. Bibcode:2010PLoSO … 511868C. Дои:10.1371 / journal.pone.0011868. ЧВК  2912328. PMID  20686619.
  23. ^ Вольперт, Льюис (2015). Принципы развития (5-е изд.). С. 520–524. ISBN  978-0-19-967814-3.
  24. ^ Флетчер Т.Л., Банкир Г.А. (декабрь 1989 г.). «Установление полярности нейронами гиппокампа: взаимосвязь между стадией развития клетки in situ и ее последующим развитием в культуре». Биология развития. 136 (2): 446–54. Дои:10.1016/0012-1606(89)90269-8. PMID  2583372.
  25. ^ Цзян Х., Рао Й. (май 2005 г.). «Формирование аксона: судьба против роста». Природа Неврология. 8 (5): 544–6. Дои:10.1038 / nn0505-544. PMID  15856056. S2CID  27728967.
  26. ^ Гослин К., Банкир Г. (апрель 1989 г.). «Экспериментальные наблюдения за развитием полярности нейронов гиппокампа в культуре». Журнал клеточной биологии. 108 (4): 1507–16. Дои:10.1083 / jcb.108.4.1507. ЧВК  2115496. PMID  2925793.
  27. ^ Lamoureux P, Ruthel G, Buxbaum RE, Heidemann SR (ноябрь 2002 г.). «Механическое напряжение может определять судьбу аксонов в нейронах гиппокампа». Журнал клеточной биологии. 159 (3): 499–508. Дои:10.1083 / jcb.200207174. ЧВК  2173080. PMID  12417580.
  28. ^ а б Аримура Н., Кайбути К. (март 2007 г.). «Полярность нейронов: от внеклеточных сигналов к внутриклеточным механизмам». Обзоры природы. Неврология. 8 (3): 194–205. Дои:10.1038 / номер 2056. PMID  17311006. S2CID  15556921.
  29. ^ Нейроглия и пионерные нейроны express UNC-6 для предоставления глобальных и локальных сетевых сигналов для управления миграциями в C. elegans
  30. ^ Серафини Т., Кеннеди Т.Э., Галко М.Дж., Мирзаян С., Джессел Т.М., Тесье-Лавин М. (август 1994 г.). «Нетрины определяют семейство белков, способствующих отрастанию аксонов, гомологичных C. elegans UNC-6». Клетка. 78 (3): 409–24. Дои:10.1016/0092-8674(94)90420-0. PMID  8062384. S2CID  22666205.
  31. ^ Хонг К., Хинк Л., Нишияма М., Пу М.М., Тесье-Лавин М., Штейн Э. (июнь 1999 г.). «Управляемая лигандом ассоциация между цитоплазматическими доменами рецепторов семейства UNC5 и DCC превращает индуцированное нетрином притяжение конуса роста в отталкивание». Клетка. 97 (7): 927–41. Дои:10.1016 / S0092-8674 (00) 80804-1. PMID  10399920. S2CID  18043414.
  32. ^ Hedgecock EM, Culotti JG, Hall DH (январь 1990 г.). «Гены unc-5, unc-6 и unc-40 управляют периферической миграцией первичных аксонов и мезодермальных клеток по эпидермису C. elegans». Нейрон. 4 (1): 61–85. Дои:10.1016 / 0896-6273 (90) 90444-К. PMID  2310575. S2CID  23974242.
  33. ^ Хуанг Э.Дж., Райхардт Л.Ф. (2003). «Рецепторы Trk: роли в передаче сигнала нейронов». Ежегодный обзор биохимии. 72: 609–42. Дои:10.1146 / annurev.biochem.72.121801.161629. PMID  12676795. S2CID  10217268.
  34. ^ а б Да Силва Дж. С., Хасегава Т., Мияги Т., Дотти К. Г., Абад-Родригес Дж. (Май 2005 г.). «Активность асимметричной мембранной ганглиозидной сиалидазы определяет судьбу аксонов». Природа Неврология. 8 (5): 606–15. Дои:10.1038 / nn1442. PMID  15834419. S2CID  25227765.
  35. ^ Брадке Ф., Дотти К.Г. (март 1999 г.). «Роль локальной нестабильности актина в формировании аксонов». Наука. 283 (5409): 1931–4. Bibcode:1999Научный … 283.1931B. Дои:10.1126 / science.283.5409.1931. PMID  10082468.
  36. ^ Ферли А.Дж., Мортон С.Б., Манало Д., Карагогеос Д., Додд Дж., Джессел Т.М. (апрель 1990 г.). «Аксональный гликопротеин TAG-1 является членом суперсемейства иммуноглобулинов с активностью, способствующей росту нейритов». Клетка. 61 (1): 157–70. Дои:10.1016/0092-8674(90)90223-2. PMID  2317872. S2CID  28813676.
  37. ^ Альбертс, Брюс (2015). Молекулярная биология клетки (Шестое изд.). п. 947. ISBN  9780815344643.
  38. ^ Куник Д., Дион С., Одзаки Т., Левин Л.А., Константино С. (2011). «Лазерная пересечение одного аксона для исследований повреждения и регенерации аксонов с высоким содержанием аксонов». PLOS ONE. 6 (11): e26832. Bibcode:2011PLoSO … 626832K. Дои:10.1371 / journal.pone.0026832. ЧВК  3206876. PMID  22073205.
  39. ^ Schwab ME (февраль 2004 г.). «Регенерация ног и аксонов». Текущее мнение в нейробиологии. 14 (1): 118–24. Дои:10.1016 / j.conb.2004.01.004. PMID  15018947. S2CID  9672315.
  40. ^ Гензель Дж. К., Накамура С., Гуан З., ван Ройен Н., Анкени Д. П., Попович П. Г. (март 2009 г.). «Макрофаги способствуют регенерации аксонов с одновременной нейротоксичностью». Журнал неврологии. 29 (12): 3956–68. Дои:10.1523 / JNEUROSCI.3992-08.2009. ЧВК  2693768. PMID  19321792.
  41. ^ Майерс К.А., Баас П.В. (сентябрь 2007 г.). «Кинезин-5 регулирует рост аксона, действуя как тормоз на его массив микротрубочек». Журнал клеточной биологии. 178 (6): 1081–91. Дои:10.1083 / jcb.200702074. ЧВК  2064629. PMID  17846176.
  42. ^ Ришал И., Кам Н., Перри Р. Б., Шиндер В., Фишер Е. М., Скьяво Г., Файнзильбер М. (июнь 2012 г.). «Механизм с приводом от двигателя для измерения длины клетки». Отчеты по ячейкам. 1 (6): 608–16. Дои:10.1016 / j.celrep.2012.05.013. ЧВК  3389498. PMID  22773964.
  43. ^ Карамчед Б.Р., Бресслофф ПК (май 2015 г.). «Модель отсроченной обратной связи для измерения длины аксонов». Биофизический журнал. 108 (9): 2408–19. Bibcode:2015BpJ … 108.2408K. Дои:10.1016 / j.bpj.2015.03.055. ЧВК  4423051. PMID  25954897.
  44. ^ Бресслов П.С., Карамчед Б.Р. (2015). «Механизм частотно-зависимого декодирования для определения длины аксона». Границы клеточной неврологии. 9: 281. Дои:10.3389 / fncel.2015.00281. ЧВК  4508512. PMID  26257607.
  45. ^ Фольц Ф., Веттманн Л., Мориджи Г., Круз К. (май 2019 г.). «Звук роста аксона». Физический обзор E. 99 (5–1): 050401. arXiv:1807.04799. Bibcode:2019PhRvE..99e0401F. Дои:10.1103 / PhysRevE.99.050401. PMID  31212501.
  46. ^ Эндрю Б.Л., часть Нью-Джерси (апрель 1972 г.). «Свойства быстрых и медленных двигательных единиц в мышцах задних конечностей и хвоста крысы». Ежеквартальный журнал экспериментальной физиологии и когнитивных медицинских наук. 57 (2): 213–25. Дои:10.1113 / expphysiol.1972.sp002151. PMID  4482075.
  47. ^ Рассел Нью-Джерси (январь 1980 г.). «Скорость аксональной проводимости изменяется после тенотомии мышц или деафферентации во время развития у крысы». Журнал физиологии. 298: 347–60. Дои:10.1113 / jphysiol.1980.sp013085. ЧВК  1279120. PMID  7359413.
  48. ^ Покок Г., Ричардс С.Д. и др. (2004). Физиология человека (2-е изд.). Нью-Йорк: Издательство Оксфордского университета. С. 187–189. ISBN  978-0-19-858527-5.
  49. ^ Dawodu ST (16 августа 2017 г.). «Травматическая травма головного мозга (ЧМТ) — определение, эпидемиология, патофизиология». Medscape. В архиве с оригинала 12 июня 2018 г.. Получено 14 июля 2018.
  50. ^ Травма и валлеровская дегенерация В архиве 2 мая 2006 г. Wayback Machine, Калифорнийский университет в Сан-Франциско
  51. ^ Coleman MP, Freeman MR (1 июня 2010 г.). «Валлеровское вырождение, мир (а) и сущность». Ежегодный обзор нейробиологии. 33 (1): 245–67. Дои:10.1146 / annurev-neuro-060909-153248. ЧВК  5223592. PMID  20345246.
  52. ^ Джилли Дж., Член парламента Коулмана (январь 2010 г.). «Эндогенный Nmnat2 является важным фактором выживания для поддержания здоровья аксонов». PLOS Биология. 8 (1): e1000300. Дои:10.1371 / journal.pbio.1000300. ЧВК  2811159. PMID  20126265.
  53. ^ Кремер-Альберс Е.М., Гериг-Бургер К., Тиле С., Троттер Дж., Наве К.А. (ноябрь 2006 г.). «Нарушенные взаимодействия мутантного протеолипидного белка / DM20 с холестерином и липидными рафтами в олигодендроглии: последствия для дисмиелинизации при спастической параплегии». Журнал неврологии. 26 (45): 11743–52. Дои:10.1523 / JNEUROSCI.3581-06.2006. ЧВК  6674790. PMID  17093095.
  54. ^ Маталон Р., Михалс-Маталон К., Сурендран С., Тайринг С.К. (2006). «Болезнь Канавана: исследования на нокаутной мыши». N-ацетиласпартат. Adv. Exp. Med. Биол. Успехи экспериментальной медицины и биологии. 576. С. 77–93, обсуждение 361–3. Дои:10.1007/0-387-30172-0_6. ISBN  978-0-387-30171-6. PMID  16802706. S2CID  44405442.
  55. ^ Ткачев Д., Миммак М.Л., Хаффакер С.Дж., Райан М., Bahn S (август 2007 г.). «Дальнейшие доказательства изменения биосинтеза миелина и глутаматергической дисфункции при шизофрении». Международный журнал нейропсихофармакологии. 10 (4): 557–63. Дои:10.1017 / S1461145706007334. PMID  17291371.
  56. ^ «Травма головного мозга, травматическая». Медциклопедия. GE. Архивировано из оригинал 26 мая 2011 г.
  57. ^ Райт Д.К., Брэди Р.Д., Камнакш А., Трезизе Дж., Сан М., Макдональд С.Дж. и др. (Октябрь 2019 г.). «Повторные легкие черепно-мозговые травмы вызывают стойкие изменения белков плазмы и биомаркеров магнитно-резонансной томографии у крыс». Научные отчеты. 9 (1): 14626. Дои:10.1038 / с41598-019-51267-ш. ЧВК  6787341. PMID  31602002.
  58. ^ Палец S (1994). Истоки нейробиологии: история исследований функций мозга. Издательство Оксфордского университета. п. 47. ISBN  9780195146943. OCLC  27151391. Келликер дал название аксону в 1896 году.
  59. ^ Грант G (декабрь 2006 г.). «Нобелевские премии 1932 и 1944 годов по физиологии и медицине: награды за новаторские исследования в области нейрофизиологии». Журнал истории неврологии. 15 (4): 341–57. Дои:10.1080/09647040600638981. PMID  16997762. S2CID  37676544.
  60. ^ Хелье, Дженнифер Л. (16 декабря 2014 г.). Мозг, нервная система и их болезни [3 тома]. ABC-CLIO. ISBN  9781610693387. В архиве из оригинала 14 марта 2018 г.
  61. ^ Хсу К., Теракава С. (июль 1996 г.). «Фенестрация в миелиновой оболочке нервных волокон креветки: новый узел возбуждения для скачкообразной проводимости». Журнал нейробиологии. 30 (3): 397–409. Дои:10.1002 / (SICI) 1097-4695 (199607) 30: 3 <397 :: AID-NEU8> 3.0.CO; 2- #. PMID  8807532.
  62. ^ Зальцер Дж. Л., Залц Б. (октябрь 2016 г.). «Миелинизация». Текущая биология. 26 (20): R971 – R975. Дои:10.1016 / j.cub.2016.07.074. PMID  27780071.
  63. ^ а б Хёффлин Ф., Джек А., Ридель С., Мак-Бухер Дж., Роос Дж., Корчелли С. и др. (2017). «Неоднородность начального сегмента аксона в интернейронах и пирамидных клетках зрительной коры грызунов». Границы клеточной неврологии. 11: 332. Дои:10.3389 / fncel.2017.00332. ЧВК  5684645. PMID  29170630.

внешняя ссылка

  • Гистологическое изображение: 3_09 в Центре медицинских наук Университета Оклахомы — «Слайд 3 Спинной мозг «

Понравилась статья? Поделить с друзьями:
  • Постирочная леруа мерлен
  • Постеры с цветами в леруа мерлен
  • Постеры на стену леруа мерлен картины
  • Постеры для интерьера леруа мерлен купить
  • Постеры в раме купить леруа мерлен