Нервная система выполняет ряд важных функций:
- обеспечивает связь организма с окружающим миром;
- управляет работой всех органов;
- координирует функционирование всех систем органов, обеспечивая их согласованную работу.
Нервная ткань
Нервная ткань отличается от других тканей нашего организма тем, что обладает особыми свойствами — возбудимостью и проводимостью. Эти свойства нервной ткани обусловлены особенностями её строения.
В состав нервной ткани входят клетки двух видов. Основные функции выполняют нейроны, а клетки-спутники (клетки нейроглии) служат опорой и обеспечивают обмен веществ.
Рис. (1). Нервная ткань
Функции нейронов: генерирование и передача нервных импульсов; обработка и хранение поступающей информации.
Нервный импульс — это волна возбуждения (биоэлектрическая волна), распространяющаяся по нервным клеткам.
Нейрон — основная клетка нервной ткани. Он имеет тело и отростки двух типов. В теле нейрона располагается ядро и органоиды, а по отросткам передаются нервные импульсы.
Дендриты — это отростки, по которым нервные импульсы передаются к телу нейрона. Эти отростки сильно ветвятся. У нейрона может быть несколько дендритов.
Аксон — это отросток, по которому импульсы передаются от тела клетки. Аксон обычно ветвится только на конце. У каждого нейрона всего один аксон.
Рис. (2). Строение нейрона
Аксоны часто окружены оболочкой из жироподобного вещества миелина. Это вещество имеет белый цвет. Скопления миелинизированных аксонов образуют белое вещество головного и спинного мозга. Тела нервных клеток и дендриты не покрыты миелином. Они серого цвета, а их группы составляют серое вещество центральной нервной системы.
Передача нервных импульсов с одной клетки на другую происходит в синапсах.
Синапс — это место контакта между двумя нейронами или между нейроном и клеткой рабочего органа.
Главными элементами синапса являются мембраны двух клеток (пресинаптическая и постсинаптическая мембраны) и пространство между ними (синаптическая щель).
Рис. (3). Строение синапса
В аксоне пресинаптического нейрона вырабатывается медиатор — особое вещество, с помощью которого происходит передача нервного импульса.
Под действием нервного импульса медиатор выделяется в синаптическую щель. Рецепторы постсинаптической мембраны реагируют на его появление и генерируют возникновение нервного импульса в следующем нейроне. Так в синапсе происходит химическая передача возбуждения с одной клетки на другую.
Нейроны различаются по своему строению и выполняемым функциям.
Рис. (4). Виды нейронов
По выполняемым функциям выделяют три типа нейронов.
Чувствительные (сенсорные) нейроны проводят информацию от органов в мозг. Тела таких нейронов находятся в нервных узлах вне центральной нервной системы.
Другая группа нейронов передаёт информацию от головного и спинного мозга к органам. Это двигательные (моторные) нейроны. Их тела находятся в сером веществе центральной нервной системы, а аксоны находятся за пределами ЦНС.
Третий вид нейронов осуществляет связь между чувствительными и двигательными нейронами. Это вставочные нейроны, они находятся в головном и спинном мозге.
Скопление нейронов в головном или спинном мозге называют ядром.
Рис. (5). Типы нейронов и синапсы
Связь между органами и центральной нервной системой осуществляется через нервы.
Нерв — это орган, в состав которого входят пучки нервных волокон, покрытые соединительнотканной оболочкой.
Рис. (6). Нерв
Нервы выполняют проводниковую функцию. Они связывают головной и спинной мозг с кожей, органами чувств и с внутренними органами.
Нервы бывают чувствительные, двигательные и смешанные.
Чувствительные нервы проводят нервные импульсы от рецепторов в мозг. В их состав входят дендриты чувствительных нейронов.
Двигательные нервы состоят из аксонов двигательных нейронов. Их функция — проведение импульсов от мозга к рабочим органам.
Смешанные нервы образованы чувствительными и двигательными волокнами и способные проводить импульсы как к ЦНС, так и от ЦНС.
Нервные сплетения представлены сетчатыми скоплениями нервных волокон разных нервов, связывающих ЦНС с внутренними органами, скелетными мышцами и кожей.
Наиболее известное солнечное сплетение находится в брюшной полости.
Источники:
Рис. 1. Нервная ткань https://image.shutterstock.com/image-photo/mammalian-nervous-tissue-under-microscope-600w-74170234.jpg
Рис. 2. Строение нейрона https://image.shutterstock.com/image-vector/education-chart-biology-nerve-cell-600w-661087429.jpg
Рис. 3. Строение синапса https://image.shutterstock.com/image-illustration/gap-between-two-nerve-cells-600w-1284912691.jpg
Рис. 4. Виды нейронов https://image.shutterstock.com/image-illustration/different-kinds-neurons-scheme-structure-600w-138356969.jpg
Рис. 5. Типы нейронов и синапсы © ЯКласс
Рис. 6. Нерв https://image.shutterstock.com/image-illustration/nerve-structure-anatomy-600w-1041115012.jpg
Ресурсы по теме
Основной структурной единицей нервной системы является нервная клетка (нейрон). Нервные клетки состоят из крупного тела клетки и двух типов нервных волокон:
-
Аксон: Длинное, тонкое нервное волокно, которое выходит из нервной клетки и может передавать сигналы в виде электрических импульсов в другие нервные клетки и мышцы
-
Дендрит: Ответвления нервных клеток, которые принимают электрические импульсы
Обычно нервы передают электрические сигналы в одном направлении — от отсылающего импульсы аксона одной нервной клетки (нейрона) на принимающие импульсы дендриты следующей нервной клетки. В контактных точках между нервными клетками (синапсах) аксон выделяет очень маленькие количества веществ, обеспечивающих передачу химическим путем (нейромедиаторов). Нейромедиаторы активируют рецепторы на дендритах следующей нервной клетки для выработки нового электрического тока. Для передачи импульсов через синапсы различные типы нервов используют различные нейромедиаторы. Некоторые импульсы стимулируют следующую нервную клетку, тогда как другие ингибируют ее.
Головной мозг и спинной мозг также содержат вспомогательные клетки, называемые глиальными клетками. Эти клетки отличаются от нервных клеток и не генерируют электрические импульсы. Существует несколько типов глиальных клеток:
-
Астроциты: Эти клетки обеспечивают нервные клетки питанием и контролируют химический состав жидкостей в окружении нервных клеток, обеспечивая их развитие. Они могут регулировать выработку нейромедиаторов и внешнюю химическую среду вокруг нервных клеток, чтобы влиять на то, как часто нервные клетки посылают импульсы, и, таким образом, регулировать степень активности скоплений нервных клеток.
-
Эпендимоциты: Эти клетки образуются вдоль открытых областей головного и спинного мозга для производства и выделения спинномозговой жидкости, которая омывает клетки нервной системы.
-
Глиальные клетки-предшественники: Эти клетки могут вырабатывать новые астроциты и олигодендроциты для замены клеток, разрушенных вследствие травм или заболеваний. Глиальные клетки-предшественники присутствуют в головном мозге взрослого человека.
-
Микроглия: Эти клетки защищают головной мозг от повреждения и способствуют выведению продуктов распада из мертвых клеток. Эти клетки могут перемещаться в нервной системе и могут размножаться для защиты головного мозга при повреждении.
-
Олигодендроциты: Эти клетки образуют покрытие вокруг аксонов нервных клеток и производят специальную мембрану, которая называется миелин; она представляет собой жирное вещество, изолирующее аксоны нерва и ускоряющее проводимость импульсов вдоль волокон.
Головной и спинной мозг состоят из серого и белого вещества.
Серое вещество состоит из тел нервных клеток, дендритов и аксонов, глиальных клеток и капилляров (самые мелкие кровеносные сосуды организма).
Нервные клетки в рабочем порядке увеличивают или уменьшают количество контактов, установленных с другими нервными клетками. Этот процесс может частично объяснять, как люди обучаются, адаптируются и формируют воспоминания. Но головной мозг и спинной мозг редко вырабатывают новые нервные клетки. Исключением является гиппокамп — участок головного мозга, участвующий в формировании памяти.
Нервная система — это чрезвычайно сложная коммуникационная система, которая может одновременно отсылать и получать массивные объемы информации. Тем не менее, эта система уязвима по отношению к заболеваниям и травмам, например, в следующих случаях:
ПРИМЕЧАНИЕ:
Это — пользовательская версия
ВРАЧИ:
Просмотреть профессиональную версию
Просмотреть профессиональную версию
Авторское право © 2023 Merck & Co., Inc., Rahway, NJ, США и ее аффилированные лица. Все права сохранены.
Cerebral Amyloid Disease
In Diagnostic Imaging: Brain (Third Edition), 2016
General Features
- •
-
Best diagnostic clue
- ○
-
Normotensive demented patient with
- □
-
Lobar hemorrhage(s) of different ages
- □
-
Multifocal cortical/subcortical microhemorrhages “black dots” on T2*
- •
-
Location
- ○
-
Cortical/subcortical WM (gray-white junction)
- ○
-
Parietal + occipital lobes most common at autopsy; also frontal + temporal on imaging
- ○
-
Less common in brainstem, deep gray nuclei, cerebellum, hippocampus
- •
-
Size
- ○
-
Acute lobar hemorrhage tends to be large
- ○
-
Hypointense foci on dark T2*/susceptibility sequences (“blooming”) seen with chronic microbleeds, but not specific for CAA
- □
-
Microbleeds and macrobleeds may represent distinct entities in CAA
- □
-
Increased vessel wall thickness may predispose to microbleed > macrobleed formation
- •
-
Morphology
- ○
-
Acute hematomas are large, often irregular, with dependent blood sedimentation
Read full chapter
URL:
https://www.sciencedirect.com/science/article/pii/B9780323377546500956
Intravascular (Angiocentric) Lymphoma
In Diagnostic Imaging: Brain (Third Edition), 2016
IMAGING
General Features
- •
-
Best diagnostic clue
- ○
-
Multifocal abnormal T2 hyperintensities in deep white matter (WM), cortex, or basal ganglia with enhancement
- ○
-
Linear and nodular enhancement commonly
- ○
-
No pathognomonic criteria for IVL
- •
-
Location
- ○
-
Supratentorial
- □
-
Periventricular/deep WM, gray-white junction
- ○
-
May involve basal ganglia, brainstem, cerebellum
- ○
-
Spinal cord involvement reported
CT Findings
- •
-
NECT
- ○
-
Often normal or nonspecific
- ○
-
Focal, bilateral, asymmetric, low-density lesions in WM, cortex, or basal ganglia
- •
-
CECT
- ○
-
Variable enhancement
- □
-
None to moderate
MR Findings
- •
-
T1WI
- ○
-
Multifocal hypointense lesions
- ○
-
May see blood products
- •
-
T2WI
- ○
-
Majority show hyperintensities in deep WM
- □
-
e.g., edema, gliosis
- ○
-
May see cortex hyperintensity, infarct-like lesions (1/3 of cases)
- ○
-
Hyperintense basal ganglia lesions common
- ○
-
May see hemorrhagic transformation
- •
-
T2* GRE
- ○
-
May see blood products “blooming”
- •
-
DWI
- ○
-
Diffusion restriction common
- ○
-
Often mimics acute stroke or vasculitis
- •
-
T1WI C+
- ○
-
Variable enhancement
- □
-
Linear, punctate, patchy, nodular, ring like, gyriform, homogeneous
- ○
-
Meningeal &/or dural enhancement
- •
-
SWI
- ○
-
Multifocal blood products related to microhemorrhage
Angiographic Findings
- •
-
Often mimics vasculitis
- ○
-
Alternating stenoses and dilatation, “beading,” primarily involving 2nd and 3rd order branches
Imaging Recommendations
- •
-
Best imaging tool
- ○
-
Multiplanar MR
- •
-
Protocol advice
- ○
-
Contrast-enhanced MR with DWI
Nuclear Medicine Findings
- •
-
PET
- ○
-
FDG PET helpful in diagnosing IVL in bone marrow and kidneys
Read full chapter
URL:
https://www.sciencedirect.com/science/article/pii/B9780323377546501688
Prodynorphin-Derived Peptides
Santi Spampinato, … Monica Baiula, in Handbook of Biologically Active Peptides (Second Edition), 2013
Dynorphin Expression in the Central Nervous System and Possible Biological Actions
Initial immunocytochemical studies of dynorphins were carried out in the rat hypothalamus, where Dyn (1–13) was found to be colocalized with vasopressin in magnocellular neurons of the supraoptic and paraventricular nuclei.17 The immunocytochemical distribution of peptides derived from the prodynorphin precursor in the brain of the rhesus monkey (Macaca mulatta) indicates a widespread neuronal localization of immunoreactivity from the cerebral cortex to the caudal medulla. Immunoreactive perikarya are located in numerous brain loci, including the cingulate cortex, caudate nucleus, amygdala, hypothalamus, thalamus, substantia grisea centralis, parabrachial nucleus, nucleus tractus solitarius, and spinal cord dorsal gray laminae. In addition, fiber and terminal immunoreactivity are seen in varying densities in the striatum and pallidum, substantia innominata, hypothalamus, substantia nigra pars reticulata, parabrachial nucleus, spinal trigeminal nucleus, and other areas. The distribution of prodynorphin peptides in the brain of the monkey is similar to that described for the rat brain; however, significant differences also exist. In situ hybridization histochemistry has been adopted as a technique to investigate the localization of prodynorphin mRNA in the central nervous system; this approach has confirmed that prodynorphin-containing cells are relatively widespread throughout brain regions that contain dynorphin peptides.17
Dynorphins play a role in a wide variety of physiological parameters, including motor activity, cardiovascular regulation, respiration, temperature regulation, feeding behavior, and hormone release.25 Although they do not elevate pain threshold when injected in the brain, they antagonize opioid analgesia in naive animals and potentiate it in tolerant animals. Dynorphins have beneficial effects on stroke that are like those of opioid antagonists rather than like those of agonists.29
Prodynorphin-positive neurons are widely distributed in brain and spinal cord areas involved in the transmission of nociceptive stimuli.17 Dynorphins may be involved in a local circuit within the spinal cord, and in supraspinal functions. Interestingly, dynorphins were also detectable in cutaneous nerves with a distribution similar to that of calcitonin-gene-related peptide, a specific marker for sensory neurons. A moderate density of KOR binding sites has been seen in the central and peripheral neuronal nociceptive system and in various immune cells.14 A lack of an antinociceptive action of dynorphin after its administration into the lateral brain ventricle24 and some slight antinociceptive activity after intrathecal injection24,29 have been reported. Other KOR agonists also possess some antinociceptive activity after their intrathecal administration. However, the effect is much weaker on a molar basis than that evoked by MOR or DOR agonists. On the other hand, in electrophysiological experiments in spinalized rats, KOR agonists reduce reflexes stimulated by thermal and mechanical nociceptive stimuli to the same extent and in a dose-dependent manner.20,24 Dynorphin-mediated analgesia has been ascribed to its inhibitory action on neurons at KOR. Electrophysiological evidence supports a KOR-mediated inhibitory effect of dynorphins on synaptic transmission of nociceptive neurons in the spinal dorsal horn.24 Dynorphins, and other neurotransmitters, can be released and can induce the hyperpolarization of neurons, potentially through a KOR-coupled enhancement of potassium conductance. In addition, dynorphin-mediated activation of KOR suppresses calcium currents and calcium-dependent secretion.4 Further, dynorphin has been shown to inhibit substance P release in the spinal cord in a KOR-mediated manner.20 The endogenous dynorphin–KOR system has been suggested to elicit antinociception during inflammation, pregnancy,24 and acupuncture.12 These studies support an antinociceptive function of dynorphin by negatively modulating transmission of nociceptive information.
Read full chapter
URL:
https://www.sciencedirect.com/science/article/pii/B9780123850959002189
Defence from Invertebrates to Mammals: Focus on Tonic Immobility
Giancarlo Carli, Francesca Farabollini, in Progress in Brain Research, 2022
6 The avian brain organization and circuits involved in TI
A new perspective on the neural basis of TI emerges in studies carried out in birds.
In comparison with the mammalian mesencephalon, the great development of the avian tectum allowed the displacement of the aqueduct laterally leading to the avian tectal ventriculum (Melleu et al., 2017). Fig. 4A and B shows that the aqueductal expansion is surrounded by cell layers of the stratum griseum periventriculare (SGP, dorsal and ventral), SGPd being comparable either to dorsolateral PAG in mammalians or to the deepest layer (layer 15) of the superior colliculus (SC). The substantia grisea centralis (CG) is situated medially: moving laterally from the midline, on the ventral surface the intercollicular nucleus (ICO) is found, with two subnuclei, ICO-m (medial) and ICO-l (lateral). The latter nuclei surround an auditory area represented by the nucleus mesencephalicus lateralis dorsalis (MLd), belonging to the ascending auditory pathway and homologous to the mammalian inferior colliculus. It has been suggested that in different species of birds, some functions of the CG of mammalians are transferred to ICO, with the CG-ICO complex displaying similar characteristics to mammalian dorsal PAG (Dubbeldam and den Boer-Visser, 2002; Melleu et al., 2017).
Fig. 4. Avian and mammalian and mesencephalic periaqueductal gray matter. (A) dm, dorso medialis; dl, dorsolateralis; lat, lateralis; vl, ventralis. (B) aq, cerebral aqueduct; GCt, griseum centralis; ICo-l, intercollicular lateralis; ICo-m, intercollicular medialis; SGPd, dorsolateral part of the stratum griseum periventriculatis; SGPv, ventral part of the stratum griseum periventricularis.
In a comparative immunocytochemical study in mice and finches species, Kingsbury et al. (2011) have given support to the “folded open hypothesis,” assuming that the avian midbrain central gray is organized much like a folded open mammalian PAG, mediolaterally oriented rather than dorsoventrally as in mammals.
According to these characteristics of avian brain organization, Melleu et al. (2017) investigated the effects of TI elicitation on c-Fos expression in adult pigeons (Columba livia), at the level of CG-ICO mesencephalic complex. In the comparison with control animals submitted to 5 min manipulation, TI elicitation induced an increase in c-Fos expression in different areas: at the SGPd of the optic tectum, at MLd and at medial and lateral ICO nucleus. On the contrary, the medial part of the nuclear complex, i.e., CG, equivalent to the mammalian ventral PAG, was not affected by TI, as proved by the absence of c-Fos response (Melleu et al., 2017).
In birds, the dorsomedial ICO area, partly comparable to the dorsal part of the mammalian PAG, is known to be involved in alarm calls in domestic chicks (De Lanerolle and Andrew, 1974) and in defense responses in some finches species (Kingsbury et al., 2011). In the latter experiments, carried out in finches and in territorial song birds (waxbill), an increased c-Fos in this region was associated with other forms of defensive behavior such as escape from human hand and subordination (Kingsbury et al., 2011).
As for the SGPd, in which c-Fos was increased after TI (Melleu et al., 2017), it is to be considered that this area, comparable either to mammalian dorsolateral PAG or to the deeper layers of the superior colliculus, is the source of tectopontine and tectobulbar descending reticular pathways that affect eye, neck and limb motor circuits that may be critical for TI development (Reiner and Karten, 1982).
Another interspecies difference in response to TI concerns the involvement of the collicula: as proved by c-Fos activation, in guinea pigs the superior colliculus, but not the inferior colliculus (Vieira et al., 2011) is affected, whereas in pigeons the TI-associated increase in c-Fos was found in MLd, i.e., the midbrain auditory nucleus, comparable to the mammalian inferior colliculus (Melleu et al., 2017). It could be suggested that, for TI mechanisms, the auditory information is more relevant in birds and the visual information more important in mammalians. The authors, underlining the differences between birds and mammals, advance the hypothesis that the pigeon’s brain organization may represent a species-specific characteristic for the circuits involved in TI mechanisms (Melleu et al., 2017).
Read full chapter
URL:
https://www.sciencedirect.com/science/article/pii/S0079612322000541
Skull and Brain
Miral D. Jhaveri MD, … Chang Yueh Ho MD, in Expertddx: Brain and Spine (Second Edition), 2018
ESSENTIAL INFORMATION
Key Differential Diagnosis Issues
- •
-
Hyperdense parenchymal lesions
- ○
-
↑ attenuation compared to normal brain
- •
-
Caused by
- ○
-
Clotted blood (most common)
- ○
-
Nonhemorrhagic hypercellular (electron dense) mass (less common)
- ○
-
Calcification (excluded here)
- •
-
History essential
- ○
-
Age
- ○
-
Trauma, hypertension, drug abuse, dementia, known extracranial primary neoplasm
- ○
-
Sudden onset vs. subacute/chronic
Helpful Clues for Common Diagnoses
- •
-
Cerebral Contusion
- ○
-
Location important
- –
-
Cortex & subcortical white matter
- –
-
Anterior inferior frontal, lateral & inferior temporal lobes most common
- –
-
Multiple > > solitary lesion
- ○
-
Tiny lesion to large confluent hematoma
- ○
-
Evolves over time; 24-48 hours existing lesion may enlarge, become more hemorrhagic
- ○
-
Look for other signs of trauma: Scalp hematoma, subarachnoid hemorrhage, skull fracture, epidural/subdural hematoma
- •
-
Hypertensive Intracranial Hemorrhage
- ○
-
Older hypertensive patient
- ○
-
Location important
- –
-
Deep > superficial location
- –
-
Nearly 2/3 striatocapsular
- –
-
Thalamus 15-25%
- –
-
Pons, cerebellum 10%
- –
-
Lobar 5-10%
- ○
-
○ Look for multifocal microbleeds (1-5%), best seen on MR with GRE/SWI sequence
- –
-
Basal ganglia, cerebellum (vs. cortical, peripheral in amyloid)
- •
-
Cerebral Amyloid Disease
- ○
-
Causes 15-20% of all spontaneous intracranial hemorrhages (ICHs) in normotensive elderly patients
- ○
-
Classic = lobar hemorrhages of different ages
- ○
-
Multifocal cortical/subcortical microhemorrhages «black dots» on T2*
- –
-
SWI more sensitive than T2* GRE for microhemorrhages
- –
-
Cortical/subcortical white matter (gray-white junction), parietal & occipital lobes most common
- •
-
Glioblastoma
- ○
-
Necrosis, hemorrhage common
- –
-
Low-density center, thick irregular high-density hypercellular rim
- •
-
Metastasis, Parenchymal
- ○
-
Can be hemorrhagic or nonhemorrhagic
- ○
-
Hypercellular, electron dense nonhemorrhagic metastases
- ○
-
Hemorrhagic metastasis: Melanoma, renal cell carcinoma, choriocarcinoma, papillary thyroid, lung, & breast
- •
-
Thrombosis, Dural Sinus
- ○
-
Multifocal > solitary hemorrhage
- ○
-
Parenchymal clot(s) adjacent to dural sinus (transverse sinus > superior sagittal sinus)
- •
-
Thrombosis, Cortical Venous
- ○
-
Multifocal > solitary hemorrhage
- ○
-
Cortical venous thrombosis can occur ± dural sinus occlusion
Helpful Clues for Less Common Diagnoses
- •
-
Cavernous Malformation
- ○
-
Variable presentation
- ○
-
Acute hemorrhage
- –
-
Common cause of spontaneous ICH in children, young adults
- ○
-
Epilepsy
- –
-
Hyperdense calcified or noncalcified parenchymal mass
- ○
-
Solitary > multiple familial
- ○
-
MR with T2* (GRE or SWI) for optimal imaging
- –
-
Popcorn ball appearance with complete hypointense hemosiderin rim on T2WI MR
- •
-
Developmental Venous Anomaly
- ○
-
Hemorrhage rare unless mixed with cavernous malformation
- ○
-
Blood in transcortical draining vein slightly hyperdense to brain
- •
-
Arteriovenous Malformation
- ○
-
Iso-/hyperdense serpentine vessels, Ca⁺⁺ in 25-30%
- ○
-
Common cause of spontaneous ICH in children, young adults
- ○
-
Rupture of intranidal aneurysm, stenosis/occlusion of draining veins
- •
-
Medulloblastoma
- ○
-
Electron dense tumor with high nuclear:cytoplasm ratio
- ○
-
Medulloblastoma subgroups arise in different locations
- –
-
Midline predominantly groups 3 & 4
- –
-
Cerebellar peduncle/cerebellopontine angle cistern: Wingless type
- –
-
Lateral cerebellar hemisphere: Sonic hedgehog
- ○
-
If midline hyperdense posterior fossa mass in child → suspect medulloblastoma
- •
-
Ependymoma, Supratentorial
- ○
-
Most ependymomas are intraventricular
- ○
-
Up to 40% are supratentorial
- –
-
In supratentorial compartment parenchymal ependymoma more common than intraventricular
- ○
-
If large hyperdense calcified solid/cystic hemispheric tumor in young child → think ependymoma
- •
-
Melanoma
- ○
-
Metastatic > primary CNS melanotic lesion
- ○
-
Melanin or hemorrhage → ↑ density
- •
-
Ganglioglioma
- ○
-
Child/young adult with epilepsy
- ○
-
Most common in temporal lobes
- ○
-
Most are partially cystic, contain Ca⁺⁺ (35-50%)
- •
-
Lymphoma, Primary CNS
- ○
-
60-80% supratentorial
- –
-
Often involve and cross corpus callosum
- –
-
Frequently contact and extend along ependymal surfaces
- ○
-
Hyperdense due to high cellularity
- ○
-
Hemorrhage rare unless HIV/AIDS, immunocompromised
- •
-
Germinoma
- ○
-
Pineal > infundibulum > basal ganglia
- ○
-
Densely cellular tumor but may also hemorrhage
- ○
-
If hyperdense basal ganglia mass in child/young adult → think germinoma
- •
-
Anaplastic Oligodendroglioma
- ○
-
Mixed density common; may Ca⁺⁺, hemorrhage
- •
-
Heterotopic Gray Matter
- ○
-
Periventricular nodular heterotopia isodense to gray matter
Helpful Clues for Rare Diagnoses
- •
-
Drug Abuse
- ○
-
Cocaine-related ICH similar locations as hypertensive ICH
- ○
-
If striatocapsular hemorrhage in young/middle-aged adult → consider drug abuse
- •
-
Tuberculoma
- ○
-
Hypodense to hyperdense round or lobulated nodule/mass with moderate to marked edema
- –
-
Supratentorial most common
- ○
-
Can mimic intra- or extraaxial neoplasm
- •
-
Neurosarcoid
- ○
-
Multifocal > solitary
- ○
-
Extraaxial > parenchymal mass(es)
- ○
-
Duraarachnoid thickening (diffuse or focal)
- ○
-
Leptomeningeal involvement; nodular &/or diffuse
- •
-
Leukemia
- ○
-
Extraaxial > intraaxial lesion
- ○
-
Hyperdense parenchymal lesion can be hemorrhagic complication (more common) or chloroma (less common)
- •
-
Tuberous Sclerosis Complex
- ○
-
Cortical, subcortical tubers can be hyperdense &/or calcified
- ○
-
Multifocal > solitary
- ○
-
Solitary large, lobar-type hyperdense tuber ± Ca⁺⁺ can mimic neoplasm
- ○
-
98% have Ca⁺⁺ subependymal nodules, most common along caudothalamic groove
- •
-
Meningioangiomatosis
- ○
-
Cortical-based, gyriform hyperdensity
- ○
-
May be densely calcified
- ○
-
Can mimic neoplasm
Read full chapter
URL:
https://www.sciencedirect.com/science/article/pii/B9780323443081501860
Mild Cognitive Impairment
Benjamin M. Hampstead PhD, Gregory S. Brown MA, in Clinics in Geriatric Medicine, 2013
Visual rating scales
As with atrophy of the medial temporal lobe, WMH are most commonly evaluated using visual rating scales and volumetric analyses. These methods possess the same general limitations as the atrophy scales discussed earlier, although additional caution is needed when considering the locations used to assess WMH (eg, periventricular white matter, deep white matter, gray-white junction) (for full reviews see Scheltens and colleagues49 or Kapeller and colleagues50). The Leukoaraiosis scale (LA)51 assigns a score between 0 (no hyperintensities) and 4 (>75% hyperintensities) within 5 general regions within each hemisphere. These values are then combined to obtain a total score. Libon and colleagues41 have used this scale extensively within the context of small vessel–based vascular dementia, and the authors previously reported differences in temporal-order memory in patients with high versus low LA scores.52 Fazekas and colleagues’53 scale uses a 4-point system to rate periventricular hyperintensities (PVH) and deep white matter hyperintensities (DWMH) separately. This scale has been widely used, but only provides general information about the presence of WMH and little information regarding the distribution of WMH.54 Scheltens and colleagues54 extended the Fazekas scale to include subcortical hyperintesity ratings as well as the number, size, and location of the WMH. Although this scale provides a greater breadth of information, it is time consuming and applicable only to higher-quality MRI scans.
Read full article
URL:
https://www.sciencedirect.com/science/article/pii/S0749069013000645
Geriatric Emergencies
Lauren M. Nentwich MD, Benjamin Grimmnitz MD, in Emergency Medicine Clinics of North America, 2016
Traumatic brain injury
Traumatic brain injury (TBI) is a significant problem in elderly patients, causing more than 80,000 ED visits per year.67 The leading causes of TBI in elderly patients are falls, accounting for 81% of all elderly patients’ hospital visits for TBI, followed by blunt head strikes and motor vehicle crashes. Elderly patients suffering a TBI have the highest rates of hospitalization and death,68 and older age has long been recognized as one of the more important factors predicting worsened outcomes from TBI.69
TBI is defined as an alteration in brain function, or other evidence of brain pathology, caused by an external force.70 The pathophysiology of TBI can be either focal, occurring at the site of impact with resultant focal neurologic deficits in those areas, or diffuse, caused by diffuse shearing of axons in the cerebral white matter, gray-white junction, corpus callosum, and/or brainstem with resulting nonlateralizing neurologic deficits. TBI is often classified by severity, usually based on the Glasgow Coma Score (GCS)71 (Table 2), In patients with moderate to severe TBI, the disease state also may be further delineated by abnormalities found on head CT, if present71,72 (Box 7).
Table 2. Classification of traumatic brain injury by severity
Severity | Glasgow Coma Scale |
---|---|
Mild | 13–15 |
Moderate | 9–12 |
Severe | 3–8 |
Data from Decuypere M, Klimo P. Spectrum of traumatic brain injury from mild to severe. Surg Clin North Am 2012;92(4):939–57. ix.
Box 7
Abnormalities found on brain imaging
Data from Decuypere M, Klimo P. Spectrum of traumatic brain injury from mild to severe. Surg Clin North Am 2012;92(4):939–57. ix; and Holmes JF, Hendey GW, Oman JA, et al. Epidemiology of blunt head injury victims undergoing ED cranial computed tomographic scanning. Am J Emerg Med 2006;24(2):167–73.
- •
-
Skull fractures
- •
-
Diastasis of the skull
- •
-
Intracranial hemorrhage
- ○
-
Epidural hematoma
- ○
-
Subdural hematoma
- ○
-
Intracerebral hematoma
- ○
-
Intraventricular hemorrhage
- ○
-
Brain contusion
- ○
-
Traumatic subarachnoid hemorrhage
- •
-
Cerebral edema
- •
-
Pneumocephalus
- •
-
Traumatic infarction
- •
-
Diffuse axonal injury
The workup of patients presenting with TBI differs based on the mechanism, severity, and patient’s age. All patients presenting with moderate to severe TBI should undergo immediate head CT. For patients presenting with mild TBI, 3 common decision rules have been derived and are used to identify which patients should undergo head CT. All 3 studies excluded patients older than 60 or 65 years due to a higher rate of intracranial abnormalities in this patient population.73–75 Brain imaging by head CT should be obtained in all elderly patients presenting with TBI, regardless of the severity of injury or the clinical presentation.
The ED management of geriatric patients who have suffered a severe TBI is similar to younger patients, with many of the recommendations provided by guidelines developed and maintained by the Brain Trauma Foundation (www.braintrauma.org)76–78 (Table 3). Trauma surgery and neurosurgery consultation should be considered early, as these services are often involved in the care of patients with severe TBI. A lower threshold for trauma surgery consultation should be used in the evaluation of elderly patients suffering a TBI due to concomitant comorbidities, age-related biological differences, and worsened outcomes in older patients. Neurosurgery should be consulted for cases with evidence of elevated ICP or abnormalities on brain imaging for evaluation on the necessity of ICP monitoring and/or surgical intervention.79 Disposition of elderly patients suffering a TBI is dependent on the comorbidities, injuries, and clinical status.
Table 3. Emergency department management of elderly patients with severe TBI
Clinical Target | Management |
---|---|
GCS | Measure initially |
Monitor continuously for clinical change | |
Airway and breathing | Evaluate and stabilize |
Correct hypoxemia (SpO2 <90%) | |
|
|
|
|
Physical Exam |
|
Assess for secondary trauma | |
Pupillary examination for asymmetry and reactivity to light | |
|
|
IV and laboratory testing | Complete blood count |
Metabolic panel (renal and hepatic function) | |
Type and screen | |
Toxicology screens | |
|
|
Consultation | Trauma surgery |
Neurosurgery | |
∗ Consider transfer to designated trauma center if services unavailable | |
Prevent elevated ICP (target ICP <20 mm Hg) | Head of the bed elevation to 30° |
|
|
Monitor central venous pressure | |
Sedation as needed to prevent agitation | |
Avoid excess hypervolemia | |
Consider ICP monitoring in high-risk patients | |
Consider mannitol, hypertonic saline, surgery for elevated ICP |
Abbreviations: ETCO2, end tidal CO2 (carbon dioxide); GCS, Glasgow Coma Scale; ICP, intracranial pressure; INR, international normalized ratio; IV, intravenous; PTT, partial thromboplastin time; SBP, systolic blood pressure; TBI, traumatic brain injury.
Data from Refs.76–78
Like ICH, special attention must be paid to the patient on anticoagulation who suffers a moderate to severe TBI with associated intracranial hemorrhage. Medication-related coagulopathy is common in the geriatric population and increases the risk of post-TBI hemorrhage. In cases of TBI hemorrhage complicated by medication-related coagulopathy, the offending drug should be discontinued and medical management should be targeted to normalize hemostasis and avert hematoma expansion (as reviewed in detail in ICH section and Table 1).51,52
Read full article
URL:
https://www.sciencedirect.com/science/article/pii/S0733862716300244