Везикулы в аксоне это

From Wikipedia, the free encyclopedia

Synaptic vesicle
Synapse diag1.svg

Neuron A (transmitting) to neuron B (receiving).
1. Mitochondrion;
2. Synaptic vesicle with neurotransmitters;
3. Autoreceptor
4. Synapse with neurotransmitter released (serotonin);
5. Postsynaptic receptors activated by neurotransmitter (induction of a postsynaptic potential);
6. Calcium channel;
7. Exocytosis of a vesicle;
8. Recaptured neurotransmitter.

Details
System Nervous system
Identifiers
Latin vesicula synaptica

A-dynamin-1--dynamin-3--and-clathrin-independent-pathway-of-synaptic-vesicle-recycling-mediated-by-elife01621fs001.jpg

MeSH D013572
TH H2.00.06.2.00004
Anatomical terms of microanatomy

[edit on Wikidata]

In a neuron, synaptic vesicles (or neurotransmitter vesicles) store various neurotransmitters that are released at the synapse. The release is regulated by a voltage-dependent calcium channel. Vesicles are essential for propagating nerve impulses between neurons and are constantly recreated by the cell. The area in the axon that holds groups of vesicles is an axon terminal or «terminal bouton». Up to 130 vesicles can be released per bouton over a ten-minute period of stimulation at 0.2 Hz.[1] In the visual cortex of the human brain, synaptic vesicles have an average diameter of 39.5 nanometers (nm) with a standard deviation of 5.1 nm.[2]

Structure[edit]

Synaptic vesicles are relatively simple because only a limited number of proteins fit into a sphere of 40 nm diameter. Purified vesicles have a protein:phospholipid ratio of 1:3 with a lipid composition of 40% phosphatidylcholine, 32% phosphatidylethanolamine, 12% phosphatidylserine, 5% phosphatidylinositol, and 10% cholesterol.[4]

Synaptic vesicles contain two classes of obligatory components: transport proteins involved in neurotransmitter uptake, and trafficking proteins that participate in synaptic vesicle exocytosis, endocytosis, and recycling.

  • Transport proteins are composed of proton pumps that generate electrochemical gradients, which allow for neurotransmitter uptake, and neurotransmitter transporters that regulate the actual uptake of neurotransmitters. The necessary proton gradient is created by V-ATPase, which breaks down ATP for energy. Vesicular transporters move neurotransmitters from the cells’ cytoplasm into the synaptic vesicles. Vesicular glutamate transporters, for example, sequester glutamate into vesicles by this process.
  • Trafficking proteins are more complex. They include intrinsic membrane proteins, peripherally bound proteins, and proteins such as SNAREs. These proteins do not share a characteristic that would make them identifiable as synaptic vesicle proteins, and little is known about how these proteins are specifically deposited into synaptic vesicles. Many but not all of the known synaptic vesicle proteins interact with non-vesicular proteins and are linked to specific functions.[4]

The stoichiometry for the movement of different neurotransmitters into a vesicle is given in the following table.

Neurotransmitter type(s) Inward movement Outward movement
norepinephrine, dopamine, histamine, serotonin and acetylcholine neurotransmitter+ 2 H+
GABA and glycine neurotransmitter 1 H+
glutamate neurotransmitter + Cl 1 H+

Recently, it has been discovered that synaptic vesicles also contain small RNA molecules, including transfer RNA fragments, Y RNA fragments and mirRNAs.[5] This discovery is believed to have broad impact on studying chemical synapses.

Effects of neurotoxins[edit]

Some neurotoxins, such as batrachotoxin, are known to destroy synaptic vesicles. The tetanus toxin damages vesicle-associated membrane proteins (VAMP), a type of v-SNARE, while botulinum toxins damage t-SNARES and v-SNARES and thus inhibit synaptic transmission.[6] A spider toxin called alpha-Latrotoxin binds to neurexins, damaging vesicles and causing massive release of neurotransmitters.[citation needed]

Vesicle pools[edit]

Vesicles in the nerve terminal are grouped into three pools: the readily releasable pool, the recycling pool, and the reserve pool.[7] These pools are distinguished by their function and position in the nerve terminal. The readily releasable pool are docked to the cell membrane, making these the first group of vesicles to be released on stimulation. The readily releasable pool is small and is quickly exhausted. The recycling pool is proximate to the cell membrane, and tend to be cycled at moderate stimulation, so that the rate of vesicle release is the same as, or lower than, the rate of vesicle formation. This pool is larger than the readily releasable pool, but it takes longer to become mobilised. The reserve pool contains vesicles that are not released under normal conditions. This reserve pool can be quite large (~50%) in neurons grown on a glass substrate, but is very small or absent at mature synapses in intact brain tissue.[8][9]

Physiology[edit]

The synaptic vesicle cycle[edit]

The events of the synaptic vesicle cycle can be divided into a few key steps:[10]

1. Trafficking to the synapse

Synaptic vesicle components are initially trafficked to the synapse using members of the kinesin motor family. In C. elegans the major motor for synaptic vesicles is UNC-104.[11] There is also evidence that other proteins such as UNC-16/Sunday Driver regulate the use of motors for transport of synaptic vesicles.[12]

2. Transmitter loading

Once at the synapse, synaptic vesicles are loaded with a neurotransmitter. Loading of transmitter is an active process requiring a neurotransmitter transporter and a proton pump ATPase that provides an electrochemical gradient. These transporters are selective for different classes of transmitters. Characterization of unc-17 and unc-47, which encode the vesicular acetylcholine transporter and vesicular GABA transporter have been described to date.[13]

3. Docking

The loaded synaptic vesicles must dock near release sites, however docking is a step of the cycle that we know little about. Many proteins on synaptic vesicles and at release sites have been identified, however none of the identified protein interactions between the vesicle proteins and release site proteins can account for the docking phase of the cycle. Mutants in rab-3 and munc-18 alter vesicle docking or vesicle organization at release sites, but they do not completely disrupt docking.[14] SNARE proteins, now also appear to be involved in the docking step of the cycle.[15]

4. Priming

After the synaptic vesicles initially dock, they must be primed before they can begin fusion. Priming prepares the synaptic vesicle so that they are able to fuse rapidly in response to a calcium influx. This priming step is thought to involve the formation of partially assembled SNARE complexes. The proteins Munc13, RIM, and RIM-BP participate in this event.[16] Munc13 is thought to stimulate the change of the t-SNARE syntaxin from a closed conformation to an open conformation, which stimulates the assembly of v-SNARE /t-SNARE complexes.[17] RIM also appears to regulate priming, but is not essential for the step.[citation needed]

5. Fusion

Primed vesicles fuse very quickly in response to calcium elevations in the cytoplasm. This fusion event is thought to be mediated directly by the SNAREs and driven by the energy provided from SNARE assembly. The calcium-sensing trigger for this event is the calcium-binding synaptic vesicle protein synaptotagmin. The ability of SNAREs to mediate fusion in a calcium-dependent manner recently has been reconstituted in vitro. Consistent with SNAREs being essential for the fusion process, v-SNARE and t-SNARE mutants of C. elegans are lethal. Similarly, mutants in Drosophila and knockouts in mice indicate that these SNARES play a critical role in synaptic exocytosis.[10]

6. Endocytosis

This accounts for the re-uptake of synaptic vesicles in the full contact fusion model. However, other studies have been compiling evidence suggesting that this type of fusion and endocytosis is not always the case.[citation needed]

Vesicle recycling[edit]

Two leading mechanisms of action are thought to be responsible for synaptic vesicle recycling: full collapse fusion and the «kiss-and-run» method. Both mechanisms begin with the formation of the synaptic pore that releases transmitter to the extracellular space. After release of the neurotransmitter, the pore can either dilate fully so that the vesicle collapses completely into the synaptic membrane, or it can close rapidly and pinch off the membrane to generate kiss-and-run fusion.[18]

Full collapse fusion[edit]

It has been shown that periods of intense stimulation at neural synapses deplete vesicle count as well as increase cellular capacitance and surface area.[19] This indicates that after synaptic vesicles release their neurotransmitter payload, they merge with and become part of, the cellular membrane. After tagging synaptic vesicles with HRP (horseradish peroxidase), Heuser and Reese found that portions of the cellular membrane at the frog neuromuscular junction were taken up by the cell and converted back into synaptic vesicles.[20] Studies suggest that the entire cycle of exocytosis, retrieval, and reformation of the synaptic vesicles requires less than 1 minute.[21]

In full collapse fusion, the synaptic vesicle merges and becomes incorporated into the cell membrane. The formation of the new membrane is a protein mediated process and can only occur under certain conditions. After an action potential, Ca2+ floods to the presynaptic membrane. Ca2+ binds to specific proteins in the cytoplasm, one of which is synaptotagmin, which in turn trigger the complete fusion of the synaptic vesicle with the cellular membrane. This complete fusion of the pore is assisted by SNARE proteins. This large family of proteins mediate docking of synaptic vesicles in an ATP-dependent manner. With the help of synaptobrevin on the synaptic vesicle, the t-SNARE complex on the membrane, made up of syntaxin and SNAP-25, can dock, prime, and fuse the synaptic vesicle into the membrane.[22]

The mechanism behind full collapse fusion has been shown to be the target of the botulinum and tetanus toxins. The botulinum toxin has protease activity which degrades the SNAP-25 protein. The SNAP-25 protein is required for vesicle fusion that releases neurotransmitters, in particular acetylcholine.[23] Botulinum toxin essentially cleaves these SNARE proteins, and in doing so, prevents synaptic vesicles from fusing with the cellular synaptic membrane and releasing their neurotransmitters. Tetanus toxin follows a similar pathway, but instead attacks the protein synaptobrevin on the synaptic vesicle. In turn, these neurotoxins prevent synaptic vesicles from completing full collapse fusion. Without this mechanism in effect, muscle spasms, paralysis, and death can occur.[citation needed]

«Kiss-and-run»[edit]

The second mechanism by which synaptic vesicles are recycled is known as kiss-and-run fusion. In this case, the synaptic vesicle «kisses» the cellular membrane, opening a small pore for its neurotransmitter payload to be released through, then closes the pore and is recycled back into the cell.[18] The kiss-and-run mechanism has been a hotly debated topic. Its effects have been observed and recorded; however the reason behind its use as opposed to full collapse fusion is still being explored. It has been speculated that kiss-and-run is often employed to conserve scarce vesicular resources as well as being utilized to respond to high-frequency inputs.[24] Experiments have shown that kiss-and-run events do occur. First observed by Katz and del Castillo, it was later observed that the kiss-and-run mechanism was different from full collapse fusion in that cellular capacitance did not increase in kiss-and-run events.[24] This reinforces the idea of a kiss-and-run fashion, the synaptic vesicle releases its payload and then separates from the membrane.

Modulation[edit]

Cells thus appear to have at least two mechanisms to follow for membrane recycling. Under certain conditions, cells can switch from one mechanism to the other. Slow, conventional, full collapse fusion predominates the synaptic membrane when Ca2+ levels are low, and the fast kiss-and-run mechanism is followed when Ca2+ levels are high.[citation needed]

Ales et al. showed that raised concentrations of extracellular calcium ions shift the preferred mode of recycling and synaptic vesicle release to the kiss-and-run mechanism in a calcium-concentration-dependent manner. It has been proposed that during secretion of neurotransmitters at synapses, the mode of exocytosis is modulated by calcium to attain optimal conditions for coupled exocytosis and endocytosis according to synaptic activity.[25]

Experimental evidence suggests that kiss-and-run is the dominate mode of synaptic release at the beginning of stimulus trains. In this context, kiss-and-run reflects a high vesicle release probability. The incidence of kiss-and-run is also increased by rapid firing and stimulation of the neuron, suggesting that the kinetics of this type of release is faster than other forms of vesicle release.[26]

History[edit]

With the advent of the electron microscope in the early 1950s, nerve endings were found to contain a large number of electron-lucent (transparent to electrons) vesicles.[27][28] The term synaptic vesicle was first introduced by De Robertis and Bennett in 1954.[29] This was shortly after transmitter release at the frog neuromuscular junction was found to induce postsynaptic miniature end-plate potentials that were ascribed to the release of discrete packages of neurotransmitter (quanta) from the presynaptic nerve terminal.[30][31] It was thus reasonable to hypothesize that the transmitter substance (acetylcholine) was contained in such vesicles, which by a secretory mechanism would release their contents into the synaptic cleft (vesicle hypothesis).[32][33]

The missing link was the demonstration that the neurotransmitter acetylcholine is actually contained in synaptic vesicles. About ten years later, the application of subcellular fractionation techniques to brain tissue permitted the isolation first of nerve endings (synaptosomes),[34] and subsequently of synaptic vesicles from mammalian brain. Two competing laboratories were involved in this work, that of Victor P. Whittaker at the Institute of Animal Physiology, Agricultural Research Council, Babraham, Cambridge, UK and that of Eduardo de Robertis at the Instituto de Anatomía General y Embriología, Facultad de Medicina, Universidad de Buenos Aires, Argentina.[35] Whittaker’s work demonstrating acetylcholine in vesicle fractions from guinea-pig brain was first published in abstract form in 1960 and then in more detail in 1963 and 1964,[36][37] and the paper of the de Robertis group demonstrating an enrichment of bound acetylcholine in synaptic vesicle fractions from rat brain appeared in 1963.[38] Both groups released synaptic vesicles from isolated synaptosomes by osmotic shock. The content of acetylcholine in a vesicle was originally estimated to be 1000–2000 molecules.[39] Subsequent work identified the vesicular localization of other neurotransmitters, such as amino acids, catecholamines, serotonin, and ATP. Later, synaptic vesicles could also be isolated from other tissues such as the superior cervical ganglion,[40] or the octopus brain.[41] The isolation of highly purified fractions of cholinergic synaptic vesicles from the ray Torpedo electric organ[42][43] was an important step forward in the study of vesicle biochemistry and function.

See also[edit]

  • Vesicular monoamine transporter
  • Synapsins
  • Vesicle fusion
  • Synaptosome

References[edit]

  1. ^ Ikeda, K; Bekkers, JM (2009). «Counting the number of releasable synaptic vesicles in a presynaptic terminal». Proc Natl Acad Sci U S A. 106 (8): 2945–50. Bibcode:2009PNAS..106.2945I. doi:10.1073/pnas.0811017106. PMC 2650301. PMID 19202060.
  2. ^ Qu, Lei; Akbergenova, Yulia; Hu, Yunming; Schikorski, Thomas (March 2009). «Synapse-to-synapse variation in mean synaptic vesicle size and its relationship with synaptic morphology and function». The Journal of Comparative Neurology. 514 (4): 343–352. doi:10.1002/cne.22007. PMID 19330815. S2CID 23965024. Archived from the original on 2013-01-05.
  3. ^ Tonna, Noemi; Bianco, Fabio; Matteoli, Michela; Cagnoli, Cinzia; Antonucci, Flavia; Manfredi, Amedea; Mauro, Nicolò; Ranucci, Elisabetta; Ferruti, Paolo (2014). «A soluble biocompatible guanidine-containing polyamidoamine as promoter of primary brain cell adhesion and in vitro cell culturing». Science and Technology of Advanced Materials. 15 (4): 045007. Bibcode:2014STAdM..15d5007T. doi:10.1088/1468-6996/15/4/045007. PMC 5090696. PMID 27877708.
  4. ^ a b Benfenati, F.; Greengard, P.; Brunner, J.; Bähler, M. (1989). «Electrostatic and hydrophobic interactions of synapsin I and synapsin I fragments with phospholipid bilayers». The Journal of Cell Biology. 108 (5): 1851–1862. doi:10.1083/jcb.108.5.1851. PMC 2115549. PMID 2497105.
  5. ^ Li, Huinan; Wu, Cheng; Aramayo, Rodolfo; Sachs, Matthew S.; Harlow, Mark L. (2015-10-08). «Synaptic vesicles contain small ribonucleic acids (sRNAs) including transfer RNA fragments (trfRNA) and microRNAs (miRNA)». Scientific Reports. 5: 14918. Bibcode:2015NatSR…514918L. doi:10.1038/srep14918. PMC 4597359. PMID 26446566.
  6. ^ Kandel ER, Schwartz JH, Jessell TM, eds. (2000). «Transmitter Release». Principles of Neural Science (4th ed.). New York: McGraw-Hill. ISBN 978-0-8385-7701-1.
  7. ^ Rizzoli, Silvio O; Betz, William J (January 2005). «Synaptic vesicle pools». Nature Reviews Neuroscience. 6 (1): 57–69. doi:10.1038/nrn1583. PMID 15611727. S2CID 7473893.
  8. ^ Rose, Tobias; Schoenenberger, Philipp; Jezek, Karel; Oertner, Thomas G. (2013). «Developmental Refinement of Vesicle Cycling at Schaffer Collateral Synapses». Neuron. 77 (6): 1109–1121. doi:10.1016/j.neuron.2013.01.021. PMID 23522046.
  9. ^ Xue, Lei; Sheng, Jiansong; Wu, Xin-Sheng; Wu, Wei; Luo, Fujun; Shin, Wonchul; Chiang, Hsueh-Cheng; Wu, Ling-Gang (2013-05-15). «Most Vesicles in a Central Nerve Terminal Participate in Recycling». Journal of Neuroscience. 33 (20): 8820–8826. doi:10.1523/jneurosci.4029-12.2013. PMC 3710729. PMID 23678124.
  10. ^ a b Südhof, T. C. (2004). «The Synaptic Vesicle Cycle». Annual Review of Neuroscience. 27: 509–547. doi:10.1146/annurev.neuro.26.041002.131412. PMID 15217342. S2CID 917924.
  11. ^ Tien, N. W.; Wu, G. H.; Hsu, C. C.; Chang, C. Y.; Wagner, O. I. (2011). «Tau/PTL-1 associates with kinesin-3 KIF1A/UNC-104 and affects the motor’s motility characteristics in C. Elegans neurons». Neurobiology of Disease. 43 (2): 495–506. doi:10.1016/j.nbd.2011.04.023. PMID 21569846. S2CID 9712304.
  12. ^ Arimoto, M.; Koushika, S. P.; Choudhary, B. C.; Li, C.; Matsumoto, K.; Hisamoto, N. (2011). «The Caenorhabditis elegans JIP3 Protein UNC-16 Functions As an Adaptor to Link Kinesin-1 with Cytoplasmic Dynein». Journal of Neuroscience. 31 (6): 2216–2224. doi:10.1523/JNEUROSCI.2653-10.2011. PMC 6633058. PMID 21307258.
  13. ^ Sandoval, G. M.; Duerr, J. S.; Hodgkin, J.; Rand, J. B.; Ruvkun, G. (2006). «A genetic interaction between the vesicular acetylcholine transporter VAChT/UNC-17 and synaptobrevin/SNB-1 in C. Elegans». Nature Neuroscience. 9 (5): 599–601. doi:10.1038/nn1685. PMID 16604067. S2CID 11812089.
  14. ^ Abraham, C.; Bai, L.; Leube, R. E. (2011). «Synaptogyrin-dependent modulation of synaptic neurotransmission in Caenorhabditis elegans». Neuroscience. 190: 75–88. doi:10.1016/j.neuroscience.2011.05.069. PMID 21689733. S2CID 14547322.
  15. ^ Hammarlund, Marc; Palfreyman, Mark T; Watanabe, Shigeki; Olsen, Shawn; Jorgensen, Erik M (August 2007). «Open Syntaxin Docks Synaptic Vesicles». PLOS Biology. 5 (8): e198. doi:10.1371/journal.pbio.0050198. ISSN 1544-9173. PMC 1914072. PMID 17645391.
  16. ^ Kaeser, Pascal S.; Deng, Lunbin; Wang, Yun; Dulubova, Irina; Liu, Xinran; Rizo, Josep; Südhof, Thomas C. (2011). «RIM Proteins Tether Ca2+ Channels to Presynaptic Active Zones via a Direct PDZ-Domain Interaction». Cell. 144 (2): 282–295. doi:10.1016/j.cell.2010.12.029. PMC 3063406. PMID 21241895.
  17. ^ Lin, X. G.; Ming, M.; Chen, M. R.; Niu, W. P.; Zhang, Y. D.; Liu, B.; Jiu, Y. M.; Yu, J. W.; Xu, T.; Wu, Z. X. (2010). «UNC-31/CAPS docks and primes dense core vesicles in C. Elegans neurons». Biochemical and Biophysical Research Communications. 397 (3): 526–531. doi:10.1016/j.bbrc.2010.05.148. PMID 20515653.
  18. ^ a b Breckenridge, L. J.; Almers, W. (1987). «Currents through the fusion pore that forms during exocytosis of a secretory vesicle». Nature. 328 (6133): 814–817. Bibcode:1987Natur.328..814B. doi:10.1038/328814a0. PMID 2442614. S2CID 4255296.
  19. ^ Heuser, J. E.; Reese, T. S. (1973). «Evidence for Recycling of Synaptic Vesicle Membrane During Transmitter Release at the Frog Neuromuscular Junction». The Journal of Cell Biology. 57 (2): 315–344. doi:10.1083/jcb.57.2.315. PMC 2108984. PMID 4348786.
  20. ^ Miller, T. M.; Heuser, J. E. (1984). «Endocytosis of synaptic vesicle membrane at the frog neuromuscular junction». The Journal of Cell Biology. 98 (2): 685–698. doi:10.1083/jcb.98.2.685. PMC 2113115. PMID 6607255.
  21. ^ Ryan, T. A.; Smith, S. J.; Reuter, H. (1996). «The timing of synaptic vesicle endocytosis». Proceedings of the National Academy of Sciences of the United States of America. 93 (11): 5567–5571. Bibcode:1996PNAS…93.5567R. doi:10.1073/pnas.93.11.5567. PMC 39287. PMID 8643616.
  22. ^ Xu, H.; Zick, M.; Wickner, W. T.; Jun, Y. (2011). «A lipid-anchored SNARE supports membrane fusion». Proceedings of the National Academy of Sciences. 108 (42): 17325–17330. Bibcode:2011PNAS..10817325X. doi:10.1073/pnas.1113888108. PMC 3198343. PMID 21987819.
  23. ^ Foran, P. G.; Mohammed, N.; Lisk, G. O.; Nagwaney, S.; Lawrence, G. W.; Johnson, E.; Smith, L.; Aoki, K. R.; Dolly, J. O. (2002). «Evaluation of the Therapeutic Usefulness of Botulinum Neurotoxin B, C1, E, and F Compared with the Long Lasting Type A. BASIS FOR DISTINCT DURATIONS OF INHIBITION OF EXOCYTOSIS IN CENTRAL NEURONS». Journal of Biological Chemistry. 278 (2): 1363–1371. doi:10.1074/jbc.M209821200. PMID 12381720.
  24. ^ a b Harata, N. C.; Aravanis, A. M.; Tsien, R. W. (2006). «Kiss-and-run and full-collapse fusion as modes of exo-endocytosis in neurosecretion». Journal of Neurochemistry. 97 (6): 1546–1570. doi:10.1111/j.1471-4159.2006.03987.x. PMID 16805768. S2CID 36749378.
  25. ^ Alvarez De Toledo, G.; Alés, E.; Tabares, L. A.; Poyato, J. M.; Valero, V.; Lindau, M. (1999). «High calcium concentrations shift the mode of exocytosis to the kiss-and-run mechanism». Nature Cell Biology. 1 (1): 40–44. doi:10.1038/9012. PMID 10559862. S2CID 17624473.
  26. ^ Zhang, Q.; Li, Y.; Tsien, R. W. (2009). «The Dynamic Control of Kiss-And-Run and Vesicular Reuse Probed with Single Nanoparticles». Science. 323 (5920): 1448–1453. Bibcode:2009Sci…323.1448Z. doi:10.1126/science.1167373. PMC 2696197. PMID 19213879.
  27. ^
    Palay, Sanford L.; Palade, George E. (1954). «Electron microscope study of the cytoplasm of neurons». The Anatomical Record (Oral presentation). 118: 336. doi:10.1002/ar.1091180211.
  28. ^ Eduardo D. P., De Robertis; Stanley, Bennett, H. (January 25, 1955). «Some Features of the Submicroscopic Morphology of Synapses in Frog and Earthworm». The Journal of Biophysical and Biochemical Cytology. 1 (1): 47–58. doi:10.1083/jcb.1.1.47. JSTOR 1602913. PMC 2223594. PMID 14381427.
  29. ^ De Robertis EDP, Bennett HS (1954). «Submicroscopic vesicular component in the synapse». Fed Proc. 13: 35.
  30. ^ Fatt, P.; Katz, B. (7 October 1950). «Some Observations on Biological Noise». Nature. 166 (4223): 597–598. Bibcode:1950Natur.166..597F. doi:10.1038/166597a0. PMID 14780165. S2CID 9117892.
  31. ^ Fatt, P.; Katz, B. (May 28, 1952). «Spontaneous subthreshold activity at motor nerve endings» (PDF). The Journal of Physiology. 117 (1): 109–128. doi:10.1113/jphysiol.1952.sp004735. PMC 1392564. PMID 14946732. Retrieved 1 February 2014.
  32. ^ Del Castillo JB, Katz B (1954). «Quantal components of the endplate potential». J. Physiol. 124 (3): 560–573. doi:10.1113/jphysiol.1954.sp005129. PMC 1366292. PMID 13175199.
  33. ^ Del Castillo JB, Katz B (1954). «Biophysical aspects of neuromuscular transmission». Prog Biophys Biophys Chem. 6: 121–170. PMID 13420190.
  34. ^ Gray EG, Whittaker VP (1962). «The isolation of nerve endings from brain: an electron microscopic study of cell fragments derived from homogenization and centrifugation». J Anat. 96: 79–88. PMC 1244174. PMID 13901297.
  35. ^ Zimmermann, Herbert (2018). «The discovery of the synaptosome and its implications». Neuromethods. 141: 9–26. doi:10.1007/978-1-4939-8739-9_2.
  36. ^ Whittaker VP, Michaelson IA, Kirkland RJ (1963). «The separation of synaptic vesicles from disrupted nerve ending particles». Biochem Pharmacol. 12 (2): 300–302. doi:10.1016/0006-2952(63)90156-4. PMID 14000416.
  37. ^ Whittaker VP, Michaelson IA, Kirkland RJ (1964). «The separation of synaptic vesicles from nerve ending particles (‘synaptosomes’)». Biochem J. 90 (2): 293–303. doi:10.1042/bj0900293. PMC 1202615. PMID 5834239.
  38. ^ De Robertis E, Rodriguez de Lores Arnaiz G, Salganicoff GL, Pellegrino de Iraldi A, Zieher LM (1963). «Isolation of synaptic vesicles and structural organization of the acetylcholine system within brain nerve endings». J Neurochem. 10 (4): 225–235. doi:10.1111/j.1471-4159.1963.tb05038.x. PMID 14026026. S2CID 33266876.
  39. ^ Whittaker VP, Sheridan MN (1965). «The morphology and acetylcholine content of isolated cerebral cortical synaptic vesicles». J Neurochem. 12 (5): 363–372. doi:10.1111/j.1471-4159.1965.tb04237.x. PMID 14333293. S2CID 5746357.
  40. ^ Wilson WS, Schulz RA, Cooper JR (1973). «The isolation of cholinergic synaptic vesicles from bovine superior cervical ganglion and estimation of their acetylcholine content». J Neurochem. 20 (3): 659–667. doi:10.1111/j.1471-4159.1973.tb00026.x. PMID 4574192. S2CID 6157415.
  41. ^ Jones DG (1970). «The isolation of synaptic vesicles from Octopus brain». Brain Res. 17 (2): 181–193. doi:10.1016/0006-8993(70)90077-6. PMID 5412681.
  42. ^ Israël M, Gautron J, Lesbats B (1970). «Subcellular fractionation of the electric organ of Torpedo marmorata«. J Neurochem. 17 (10): 1441–1450. doi:10.1111/j.1471-4159.1970.tb00511.x. PMID 5471906. S2CID 8087195.
  43. ^ Whittaker VP, Essman WB, Dowe GH (1972). «The isolation of pure cholinergic synaptic vesicles from the electric organs of elasmobranch fish of the family Torpidinidae». Biochem J. 128 (4): 833–846. doi:10.1042/bj1280833. PMC 1173903. PMID 4638794.

External links[edit]

  • Synaptic Vesicles – Cell Centered Database

Любая небольшая сферическая органелла, заполненная жидкостью, заключенная в мембрану Схема липосомы, образованной фосфолипиды в водном растворе.

В клеточной биологии везикула представляет собой структуру внутри или снаружи клетки , состоящей из жидкости или цитоплазмы, заключенной в липидный бислой. Везикулы образуются естественным образом во время процессов секреции (экзоцитоз ), поглощения (эндоцитоз ) и транспорта материалов внутри плазматической мембраны. Альтернативно, они могут быть получены искусственно, и в этом случае они называются липосомами (не путать с лизосомами ). Если имеется только один фосфолипидный бислой, они называются однослойными липосомами везикулами; в противном случае их называют многослойными. Мембрана, охватывающая везикулу, также имеет пластинчатую фазу, аналогичную мембране плазматической мембраны, и внутриклеточные везикулы могут сливаться с плазматической мембраной, высвобождая свое содержимое за пределы клетки. Везикулы также могут сливаться с другими органеллами внутри клетки. Везикула, высвобождаемая из клетки, известна как внеклеточная везикула.

. Везикулы выполняют множество функций. Поскольку он отделен от цитозоля, внутренняя часть везикулы может отличаться от цитозольной среды. По этой причине везикулы являются основным инструментом, используемым клеткой для организации клеточных веществ. Везикулы участвуют в метаболизме, транспорте, контроле плавучести и временном хранении пищи и ферментов. Они также могут действовать как камеры химических реакций.

Сарфус изображение липидных везикул. IUPAC определение Замкнутая структура, образованная амфифильными молекулами, которые содержат растворитель (обычно воду).

Нобелевская премия 2013 года в области физиологии и медицины разделяли Джеймс Ротман, Рэнди Шекман и Томас Зюдхоф за их роль в разъяснении (основываясь на более ранних исследованиях, некоторые из них их наставниками) состав и функцию клеточных везикул, особенно у дрожжей и людей, включая информацию о частях каждой везикулы и способах их сборки. Считается, что дисфункция везикул способствует развитию болезни Альцгеймера, диабета, некоторых трудно поддающихся лечению случаев эпилепсии, некоторых видов рака и иммунологических расстройств, а также определенных нейроваскулярных состояний.

Содержание

  • 1 Типы везикулярных структур
    • 1.1 Вакуоли
    • 1.2 Лизосомы
    • 1.3 Транспортные везикулы
    • 1.4 Секреторные везикулы
      • 1.4.1 Типы
    • 1.5 Внеклеточные везикулы
      • 1.5.1 Типы
    • 1.6 Другие типы
  • 2 Образование и транспорт
    • 2.1 Оболочка везикул и молекулы груза
    • 2.2 Стыковка везикул
    • 2.3 Слияние везикул
    • 2.4 Подавление рецептора In
    • 2.5 Подготовка
      • 2.5.1 Изолированные везикулы
    • 2.6 Искусственные пузырьки
  • 3 См. Также
  • 4 Ссылки
  • 5 Дополнительная литература
  • 6 Внешние ссылки

Типы везикулярных структур

Электронная микрофотография клетка, содержащая пищевую вакуоль (fv) и транспортную вакуоль (TV) у малярийного паразита.

вакуоли

Vacules — это клеточные органеллы, которые содержат в основном воду.

  • Растительные клетки имеют большую центральную вакуоль в центре клетки, которая используется для осмотического контроля и хранения питательных веществ.
  • Сократительные вакуоли являются найдены у некоторых протистов, особенно у представителей типа Ciliophora. Эти вакуоли забирают воду из цитоплазмы и выводят ее из клетки, чтобы избежать разрыва из-за осмотического давления.

.

Лизосомы

  • Лизосомы участвуют в пищеварении клеток. Пища может поступать извне клетки в пищевые вакуоли с помощью процесса, называемого эндоцитозом. Эти пищевые вакуоли сливаются с лизосомами, которые расщепляют компоненты, чтобы их можно было использовать в клетке. Эта форма клеточного питания называется фагоцитоз..
  • Лизосомы также используются для разрушения дефектных или поврежденных органелл в процессе, называемом аутофагией. Они сливаются с мембраной поврежденной органеллы, переваривая ее.

Транспортные везикулы

  • Транспортные везикулы могут перемещать молекулы между местами внутри клетки, например, белки из грубого эндоплазматического ретикулума в Аппарат Гольджи.
  • Связанные с мембраной и секретируемые белки образуются на рибосомах, обнаруженных в шероховатом эндоплазматическом ретикулуме. Большинство этих белков созревают в аппарате Гольджи перед тем, как попасть в конечный пункт назначения, которым могут быть лизосомы, пероксисомы или вне клетки. Эти белки перемещаются внутри клетки внутри транспортных пузырьков.

Секреторные везикулы

Секреторные везикулы содержат материалы, которые должны быть выведены из клетки. У клеток есть много причин для выделения материалов. Одна из причин — избавиться от отходов. Другая причина связана с функцией клетки. В более крупном организме некоторые клетки специализируются на производстве определенных химических веществ. Эти химические вещества хранятся в секреторных пузырьках и высвобождаются при необходимости.

Типы

  • Синаптические везикулы расположены в пресинаптических окончаниях в нейронах и хранят нейротрансмиттеры. Когда сигнал идет по аксону, синаптические везикулы сливаются с клеточной мембраной, высвобождая нейромедиатор, так что он может быть обнаружен молекулами рецептора на следующей нервной клетке.
  • У животных эндокринные ткани выделяют гормоны в кровоток. Эти гормоны хранятся в секреторных пузырьках. Хорошим примером является эндокринная ткань, обнаруженная в островках Лангерганса в поджелудочной железе. Эта ткань содержит множество типов клеток, которые определяются тем, какие гормоны они производят.
  • Секреторные пузырьки содержат ферменты, которые используются для создания клеточных стенок растения, простейшие, грибы, бактерии и клетки архей, а также внеклеточный матрикс животные клетки.
  • Бактерии, археи, грибы и паразиты выделяют мембранные везикулы (МВ), содержащие различные, но специализированные токсичные соединения и биохимические сигнальные молекулы, которые транспортируются к клеткам-мишеням, чтобы инициировать процессы в пользу микроб, которые включают инвазию клеток-хозяев и уничтожение конкурирующих микробов в одной и той же нише.

Внеклеточные везикулы

Внеклеточные везикулы (EV) — это частицы, ограниченные липидным бислоем, производимые всеми доменами жизни, включая сложные эукариоты, как грамотрицательные, так и грамположительные бактерии, микобактерии и грибы.

Типы

  • Эктосомы / микровезикулы выделяются непосредственно из пл. asma и может иметь размер от примерно 30 нм до более микрона в диаметре). Они могут включать крупные частицы, такие как апоптотические пузырьки, высвобождаемые умирающими клетками, высвобождаемые некоторыми раковыми клетками, или «,», описанные в культуре нейрональных клеток.
  • Экзосомы : мембранные везикулы эндоцитарного происхождения ( 30-100 нм в диаметре).

Различные типы ЭМ могут быть разделены на основе плотности (с помощью градиентного дифференциального центрифугирования ), размера или маркеров поверхности. Однако подтипы EV имеют перекрывающиеся диапазоны размеров и плотности, и уникальные для подтипа маркеры должны устанавливаться для каждой ячейки. Следовательно, трудно точно определить путь биогенеза, который вызвал конкретный EV после того, как он покинул клетку.

У человека эндогенные внеклеточные везикулы, вероятно, играют роль в коагуляции, межклеточной передаче сигналов и управлении отходами. Они также вовлечены в патофизиологические процессы, связанные с множеством заболеваний, включая рак. Внеклеточные везикулы вызвали интерес как потенциальный источник открытия биомаркеров из-за их роли в межклеточной коммуникации, высвобождения в легкодоступные жидкости организма и сходства их молекулярного содержания с таковым из высвобождающих клеток. Внеклеточные везикулы (мезенхимальных) стволовых клеток, также известные как секретом стволовых клеток, исследуются и применяются в терапевтических целях, преимущественно дегенеративных, аутоиммунные и / или воспалительные заболевания.

У грамотрицательных бактерий ЭВ производятся путем отщипывания наружной мембраны; однако, как ЭВ избегают толстых клеточных стенок грамположительных бактерий, микобактерий и грибов, все еще неизвестно. Эти электромобили содержат разнообразный груз, включая нуклеиновые кислоты, токсины, липопротеины и ферменты, и играют важную роль в физиологии микробов и патогенезе. Во взаимодействиях хозяин-патоген грамотрицательные бактерии продуцируют везикулы, которые играют роль в создании ниши колонизации, переносе и передаче факторов вирулентности в клетки-хозяева и модулировании защиты и реакции хозяина.

Ocean цианобактерии имеют было обнаружено, что везикулы, содержащие белки, ДНК и РНК, непрерывно высвобождаются в открытый океан. Везикулы, несущие ДНК различных бактерий, многочисленны в образцах морской воды прибрежных районов и открытого океана.

Другие типы

Газовые везикулы используются архей, бактериями и планктонных микроорганизмов, возможно, для контроля вертикальной миграции путем регулирования содержания газа и, таким образом, плавучести, или, возможно, для размещения элемента для максимального сбора солнечного света. Эти везикулы обычно представляют собой трубочки лимонной или цилиндрической формы, сделанные из белка; их диаметр определяет прочность пузырька, более крупные — более слабые. Диаметр пузырька также влияет на его объем и на то, насколько эффективно он может обеспечивать плавучесть. У цианобактерий естественный отбор работал над созданием везикул максимально возможного диаметра, при этом оставаясь структурно стабильными. Белковая оболочка проницаема для газов, но не для воды, что предохраняет везикулы от наводнения.

Везикулы матрицы расположены во внеклеточном пространстве или матриксе. С помощью электронной микроскопии они были независимо открыты в 1967 году Х. Кларком Андерсоном и Эрманно Бонуччи. Эти полученные из клеток везикулы специализируются на инициировании биоминерализации матрикса в различных тканях, включая кость, хрящ и дентин. Во время нормальной кальцификации основной приток ионов кальция и фосфата в клетки сопровождает клеточный апоптоз (генетически детерминированное самоуничтожение) и образование матричных пузырьков. Нагрузка кальцием также приводит к образованию комплексов фосфатидилсерин : кальций: фосфат в плазматической мембране, частично опосредованного белком, называемым аннексинами. Везикулы матрикса зачаток от плазматической мембраны в местах взаимодействия с внеклеточным матриксом. Таким образом, везикулы матрикса переносят во внеклеточный матрикс кальций, фосфаты, липиды и аннексины, которые участвуют в зародышеобразовании минералов. Эти процессы точно скоординированы, чтобы вызвать в нужном месте и в нужное время минерализацию тканевого матрикса, если только Гольджи не существуют.

Мультивезикулярное тельце, или MVB, представляет собой мембранно-связанную везикулу, содержащую ряд более мелких везикул.

Образование и транспорт

Биология клетки
животная клетка
Animal Cell.svg Компоненты типичной животной клетки:

  1. Ядрышко
  2. Ядро
  3. Рибосома (точки как часть 5)
  4. везикула
  5. грубая эндоплазматическая сеть
  6. аппарат Гольджи (или тельца Гольджи)
  7. цитоскелет
  8. гладкая эндоплазматическая сеть
  9. митохондрия
  10. вакуоль
  11. Цитозоль (жидкость, содержащая органеллы ; из которой состоит цитоплазма )
  12. лизосома
  13. центросома
  14. клеточная мембрана

Некоторые везикулы образуются, когда часть мембраны защемляется от эндоплазматического ретикулума или комплекса Гольджи. Другие образуются, когда объект вне клетки окружен клеточной мембраной.

Оболочка везикулы и молекулы груза

«Оболочка» везикул представляет собой набор белков, которые служат для формирования кривизны донорной мембраны, формируя округлую форму везикулы. Белки оболочки также могут связываться с различными трансмембранными рецепторными белками, называемыми грузовыми рецепторами. Эти рецепторы помогают выберите, какой материал подвергается эндоцитозу рецептор-опосредованного эндоцитоза или внутриклеточного транспорта.

Существует три типа оболочки везикул: клатрин, COPI и COPII. Различные типы белков оболочки помогают в сортировке пузырьков до их конечного пункта назначения. Клатриновые оболочки обнаруживаются на везикулах, перемещающихся между Гольджи и плазматической мембраной, эндосомами Гольджи и и плазматической мембраной и эндосомами. Везикулы, покрытые COPI, ответственны за ретроградный транспорт от Гольджи к ER, тогда как везикулы, покрытые COPII, ответственны за антероградный транспорт из ER в Golgi.

Предполагается, что оболочка клатрина собирается в ответ на регуляторный G-белок. Белковая оболочка собирается и разбирается благодаря белку фактора рибозилирования АДФ (ARF).

стыковка везикул

Поверхностные белки, называемые SNARE, идентифицируют груз везикул, а дополнительные SNARE на мембране-мишени действуют, вызывая слияние везикулы и мембраны-мишени. Предполагается, что такие v-SNARES существуют на мембране везикул, в то время как дополнительные на мембране-мишени известны как t-SNAREs.

Часто SNARE, связанные с везикулами или мембранами-мишенями, вместо этого классифицируются как SNARE Qa, Qb, Qc или R из-за большей вариабельности, чем просто v- или t-SNARE. Множество различных комплексов SNARE можно увидеть в разных тканях и субклеточных компартментах, 36 изоформ в настоящее время идентифицированы у людей.

Регуляторные Rab белки, как полагают, инспектируют соединение SNARE. Белок Rab является регуляторным GTP-связывающим белком и контролирует связывание этих комплементарных SNARE в течение достаточно длительного времени, чтобы белок Rab гидролизовал связанный с ним GTP и закрепил везикулу на мембране.

Слияние везикул

Слияние везикул может происходить одним из двух способов: полное слияние или слияние типа «поцелуй и беги». Fusion требует, чтобы две мембраны были расположены на расстоянии 1,5 нм друг от друга. Для этого вода должна быть вытеснена с поверхности мембраны везикул. Это энергетически невыгодно, и данные свидетельствуют о том, что для этого процесса требуются АТФ, GTP и ацетил-коА. Слияние также связано с бутонизацией, поэтому и появился термин «бутонизация» и «слияние».

При подавлении рецепторов

Мембранные белки, служащие рецепторами, иногда помечаются для подавления путем присоединения убиквитина. После прибытия в эндосому по пути, описанному выше, везикулы начинают формироваться внутри эндосомы, унося с собой мембранные белки, предназначенные для деградации; Когда эндосома созревает и становится лизосомой, или соединяется с ней, везикулы полностью разрушаются. Без этого механизма только внеклеточная часть мембранных белков достигла бы просвета лизосомы, и только эта часть была бы разрушена.

Именно из-за этих везикул эндосома иногда является известен как мультивезикулярное тело. Путь к их образованию до конца не изучен; в отличие от других везикул, описанных выше, внешняя поверхность везикул не контактирует с цитозолем.

Препарат

Изолированные везикулы

Производство мембранных везикул является одним из способов исследовать различные мембраны клетки. После того, как живая ткань измельчается в суспензию, различные мембраны образуют крошечные закрытые пузырьки. Большие фрагменты раздробленных клеток могут быть отброшены низкоскоростным центрифугированием, а затем фракция известного происхождения (плазмалемма, тонопласт и т. Д.) Может быть выделена точным высокоскоростным центрифугирование в градиенте плотности. Используя осмотический шок, можно временно открыть везикулы (заполнить их необходимым раствором), а затем снова центрифугировать и ресуспендировать в другом растворе. Применение ионофоров, таких как валиномицин, может создавать электрохимические градиенты, сравнимые с градиентами внутри живых клеток.

Везикулы в основном используются в двух типах исследований:

  • для поиска и последующего выделения мембранных рецепторов, которые специфически связывают гормоны и различные другие важные вещества.
  • Для исследования транспорта различных ионов или других веществ. вещества через мембрану данного типа. В то время как транспорт может быть более легко исследован с помощью методов патч-зажим, везикулы также могут быть изолированы от предметов, для которых патч-зажим не применим.

Искусственные везикулы

Фосфолипидные везикулы также были изучал биохимию. Для таких исследований можно приготовить гомогенную суспензию фосфолипидных везикул путем экструзии или обработки ультразвуком, инъекции раствора фосфолипида в мембраны из водного буферного раствора. Таким образом, водные растворы везикул могут быть приготовлены из различных фосфолипидных составов, а также из везикул разного размера.

См. Также

  • Bleb (клеточная биология)
  • Интерфейс хозяина и патогена
  • Мембранные контактные участки
  • Мембранные нанотрубки
  • Транспортировка мембранных пузырьков
  • Мицеллы
  • Микросома
  • Protocell
  • Spitzenkörper, структура из множества мелких пузырьков, обнаруженных в гифах грибов

Ссылки

Дополнительная литература

  • Alberts, Bruce; и другие. (1998). Эссенциальная клеточная биология: введение в молекулярную биологию клетки. Гарленд Паб. ISBN 978-0-8153-2971-8 .

Внешние ссылки

  • Липиды, мембраны и обмен везикул — Виртуальная библиотека биохимии, молекулярной биологии и клеточной биологии

From Wikipedia, the free encyclopedia

Activity at an axon terminal: Neuron A is transmitting a signal at the axon terminal to neuron B (receiving). Features: 1. Mitochondrion. 2. Synaptic vesicle with neurotransmitters. 3. Autoreceptor. 4. Synapse with neurotransmitter released (serotonin). 5.Postsynaptic receptors activated by neurotransmitter (induction of a postsynaptic potential). 6. Calcium channel. 7. Exocytosis of a vesicle. 8. Recaptured neurotransmitter.

Axon terminals (also called synaptic boutons, terminal boutons, or end-feet) are distal terminations of the telodendria (branches) of an axon. An axon, also called a nerve fiber, is a long, slender projection of a nerve cell, or neuron, that conducts electrical impulses called action potentials away from the neuron’s cell body, or soma, in order to transmit those impulses to other neurons, muscle cells or glands.

Neurons are interconnected in complex arrangements, and use electrochemical signals and neurotransmitter chemicals to transmit impulses from one neuron to the next; axon terminals are separated from neighboring neurons by a small gap called a synapse, across which impulses are sent. The axon terminal, and the neuron from which it comes, is sometimes referred to as the «presynaptic» neuron.

Nerve impulse release[edit]

Neurotransmitters are packaged into synaptic vesicles that cluster beneath the axon terminal membrane on the presynaptic side of a synapse. The axonal terminals are specialized to release the neurotransmitters of the presynaptic cell.[1] The terminals release transmitter substances into a gap called the synaptic cleft between the terminals and the dendrites of the next neuron. The information is received by the dendrite receptors of the postsynaptic cell that are connected to it. Neurons don’t touch each other, but communicate across the synapse.[2]

The neurotransmitter molecule packages (vesicles) are created within the neuron, then travel down the axon to the distal axon terminal where they sit docked. Calcium ions then trigger a biochemical cascade which results in vesicles fusing with the presynaptic membrane and releasing their contents to the synaptic cleft within 180 µs of calcium entry.[3] Triggered by the binding of the calcium ions, the synaptic vesicle proteins begin to move apart, resulting in the creation of a fusion pore. The presence of the pore allows for the release of neurotransmitter into the synaptic cleft.[4][5] The process occurring at the axon terminal is exocytosis,[6] which a cell uses to exude secretory vesicles out of the cell membrane. These membrane-bound vesicles contain soluble proteins to be secreted to the extracellular environment, as well as membrane proteins and lipids that are sent to become components of the cell membrane. Exocytosis in neuronal chemical synapses is Ca2+ triggered and serves interneuronal signalling.[7]

Mapping activity[edit]

Structure of a typical neuron

Neuron

At one end of an elongated structure is a branching mass. At the centre of this mass is the nucleus and the branches are dendrites. A thick axon trails away from the mass, ending with further branching which are labeled as axon terminals. Along the axon are a number of protuberances labeled as myelin sheaths.

Dendrite

Soma

Axon

Nucleus

Node of
Ranvier

Axon terminal

Schwann cell

Myelin sheath

Wade Regehr, a Professor of Neurobiology at Harvard Medical School’s Department of Neurobiology, developed a method to physiologically see the synaptic activity that occurs in the brain. A dye alters the fluorescence properties when attached to calcium. Using fluorescence-microscopy techniques calcium levels are detected, and therefore the influx of calcium in the presynaptic neuron.[8] Regehr’s laboratory specializes in pre-synaptic calcium dynamics which occurs at the axon terminals. Regehr studies the implication of calcium Ca2+ as it affects synaptic strength.[9][self-published source?][10] By studying the physiological process and mechanisms, a further understanding is made of neurological disorders such as epilepsy, schizophrenia and major depressive disorder, as well as memory and learning.[11][12]

See also[edit]

  • Endoplasmic reticulum
  • Golgi apparatus
  • Micelle
  • Membrane nanotube
  • Endocytosis
  • Vesicular monoamine transporter

Further reading[edit]

  • Cragg SJ, Greenfield SA (August 1997). «Differential autoreceptor control of somatodendritic and axon terminal dopamine release in substantia nigra, ventral tegmental area, and striatum». The Journal of Neuroscience. 17 (15): 5738–46. doi:10.1523/JNEUROSCI.17-15-05738.1997. PMC 6573186. PMID 9221772.
  • Vaquero CF, de la Villa P (October 1999). «Localisation of the GABA(C) receptors at the axon terminal of the rod bipolar cells of the mouse retina». Neuroscience Research. 35 (1): 1–7. doi:10.1016/S0168-0102(99)00050-4. PMID 10555158. S2CID 53189471.
  • Roffler-Tarlov S, Beart PM, O’Gorman S, Sidman RL (May 1979). «Neurochemical and morphological consequences of axon terminal degeneration in cerebellar deep nuclei of mice with inherited Purkinje cell degeneration». Brain Research. 168 (1): 75–95. doi:10.1016/0006-8993(79)90129-X. PMID 455087. S2CID 19618884.
  • Yagi T, Kaneko A (February 1988). «The axon terminal of goldfish retinal horizontal cells: a low membrane conductance measured in solitary preparations and its implication to the signal conduction from the soma». Journal of Neurophysiology. 59 (2): 482–94. doi:10.1152/jn.1988.59.2.482. PMID 3351572.
  • LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite.[13]

References[edit]

  1. ^ «Axon Terminal». Medical Dictionary Online. Archived from the original on 2016-03-04. Retrieved February 6, 2013.
  2. ^ Foster, Sally. «Axon Terminal — Synaptic Vesicle — Neurotransmitter». Retrieved February 6, 2013.
  3. ^ Llinás R, Steinberg IZ, Walton K (March 1981). «Relationship between presynaptic calcium current and postsynaptic potential in squid giant synapse». Biophysical Journal. 33 (3): 323–51. Bibcode:1981BpJ….33..323L. doi:10.1016/S0006-3495(81)84899-0. PMC 1327434. PMID 6261850.
  4. ^ Carlson, 2007, p.56
  5. ^ Chudler EH (November 24, 2011). «Neuroscience for kids Neurotransmitters and Neuroactive Peptides». Archived from the original on December 18, 2008. Retrieved February 6, 2013.
  6. ^ Rizo, Josep (2018-07-10). «Mechanism of neurotransmitter release coming into focus». Protein Science (Review). 27 (8): 1364–1391. doi:10.1002/pro.3445. ISSN 0961-8368. PMC 6153415. PMID 29893445. Research for three decades and major recent advances have provided crucial insights into how neurotransmitters are released by Ca2+ -triggered synaptic vesicle exocytosis, leading to reconstitution of basic steps that underlie Ca2+ -dependent membrane fusion and yielding a model that assigns defined functions for central components of the release machinery.
  7. ^ Südhof TC, Rizo J (December 2011). «Synaptic vesicle exocytosis». Cold Spring Harbor Perspectives in Biology. 3 (12): a005637. doi:10.1101/cshperspect.a005637. PMC 3225952. PMID 22026965.
  8. ^
    Sauber C. «Focus October 20-Neurobiology VISUALIZING THE SYNAPTIC CONNECTION». Archived from the original on 2006-09-01. Retrieved July 3, 2013.
  9. ^
    Regehr W (1999–2008). «Wade Regehr, Ph.D.» Archived from the original on February 18, 2010. Retrieved July 3, 2013.
  10. ^ President and Fellows of Harvard College (2008). «The Neurobiology Department at Harvard Medical School». Archived from the original on 20 December 2008. Retrieved July 3, 2013.
  11. ^ «NINDS Announces New Javits Neuroscience Investigator Awardees» (Press release). National Institute of Neurological Disorders and Stroke. May 4, 2005. Archived from the original on January 17, 2009. Retrieved February 6, 2013.
  12. ^ «Scholar Awards». The McKnight Endowment Fund for Neuroscience. Archived from the original on 2004-05-08. Retrieved July 3, 2013.
  13. ^ Toni N, Buchs PA, Nikonenko I, Bron CR, Muller D (November 1999). «LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite». Nature. 402 (6760): 421–5. Bibcode:1999Natur.402..421T. doi:10.1038/46574. PMID 10586883. S2CID 205056308.

Синаптические везикулы обеспечивают связь между нейронами, а значит, их изучение является необходимым для понимания того, как функционирует нервная система. Кроме того, везикулы являются моделью для изучения общих для всех клеток механизмов клеточного транспорта. Новая трехмерная модель синапса включает 300 тысяч белков в атомарном разрешении. Эта подробная модель открывает новые возможности для изучения тонких механизмом работы синаптических везикул.

По приблизительным оценкам, в среднем в эукариотической клетке содержится 7,9×109 молекул белков [1]. Удивительно, но такое огромное число молекул не ведет к хаосу и неразберихе, а обеспечивает точное выполнение всех клеточных функций, в которых у каждой молекулы есть свои место и задача. Благодаря подробному изучению различных клеточных процессов и молекулярных путей, ученые проникают все глубже в понимание тонкой клеточной организации. Важное место в таких исследованиях занимает исследование работы синаптических пузырьков (везикул), ведь они не только являются основой функционирования нашей нервной системы, но и представляют собой модель для изучения общих принципов мембранного транспорта. Не даром в 2013 году за исследования везикулярного транспорта вручена Нобелевская премия по физиологии и медицине [2]!

Синаптические везикулы — это маленькие мембранные пузырьки, находящиеся в синаптических окончаниях нейронов (особые расширения на концах нейронных отростков, обеспечивающие связь между нейронами). Синаптические везикулы заполнены медиаторами — химическими веществами, которые изменяю работу нейронов. Когда везикулы сливаются с мембраной синаптического окончания, медиатор попадает в щель между синаптическими окончаниями двух нейронов и таким образом передает сигнал от одного нейрона к другому. Благодаря тому, что все синаптические везикулы сконцентрированы в синаптических окончаниях, их легко выделять из изучаемых тканей для анализа. Поэтому именно судьба синаптических везикул — это один из самых хорошо изученных сейчас клеточных путей.

Известно, что он состоит из трех этапов. Сначала пузырек прикрепляется к специальному участку синаптической мембраны — активной зоне (этот этап называется докинг). Потом он подготавливается к слиянию с синаптической мембраной (прайминг) и, в конце концов, сливается с ней, высвобождая медиатор в синаптическую щель (экзоцитоз). Параллельно на синаптической мембране происходит эндоцитоз с образованием пузырька, который постепенно обеспечивается всеми необходимыми молекулами и медиатором для восполнения запаса везикул.

Для того, чтобы более полно описать работу синаптической везикулы и синаптичсекого окончания, необходимо подробно изучить ее молекулярное строение и белковый состав. Первая модель синаптического пузырька с атомным разрешением появилась еще семь лет назад [3]. В этой работе ученым удалось изучить некоторые особенности устройства везикулы, — например, они обнаружили, что белковые молекулы занимают около 20% поверхности мембраны везикулы, и при этом липидные компоненты мембраны представлены, по больше части, «жесткими» малоподвижными липидами. Новая работа ученых из Гёттингена позволила дополнить эти данные и подробно охарактеризовать соотношение различных белковых молекул внутри синаптического пузырька [4].

Группа исследователей под руководством Силвио Риццоли использовала комплексный подход, объединив количественный иммуноблоттинг, масс-спектрометрию, электронную микроскопию и флуоресцентную микроскопию высокого разрешения, что позволило им охарактеризовать не только количество разных белков в везикулах и в цитоплазме вокруг них, но и их расположение внутри синаптического окончания. На первом этапе своего исследования они выделили синаптические окончания из образцов мозга крысы. Сделать это можно с помощью центрифугирования в градиенте полисахарида (в данной работе был использован синтетический полисахарид Ficoll, но подобный эксперимент можно провести и с обыкновенной сахарозой).

Разные компоненты клетки имеют разную плотность, поэтому, если разрушенные клетки (гомогенат) поместить в пробирку с несколькими слоями растворов сахара разной концентрацией и начать вращать на центрифуге, органеллы распределяться по этим слоям, выбирая слой с близкой плотностью. При разрушении нервных клеток синаптические окончания отрываются от нейронных отростков и образуют так называемые синаптосомы, которые можно обнаружить в слое с 9% концентрацией полисахарида Ficoll (рис. 1). Полученный образец синаптосом исследователи, прежде всего, изучили с помощью электронного микроскопа. Это помогло охарактеризовать пространственные параметры синаптосом: их размер, количество синаптических пузырьков в одной синаптосоме, объем этих пузырьков.

Синаптосомы

Рисунок 1. Синаптосомы. а — Схема приготовление препарата синаптосом. б — Реконструкция синаптосомы по электронным микрофотографиям. Красным отмечена активная зона, темно-бежевым — синаптические везикулы, темно-серым — более крупные органеллы, розовым — митохондрия.

Убедившись, что процедура выделения синаптосом не изменила содержащееся в них количество белков, ученые вычислили концентрацию 62 различных белков с помощью количественного иммуноблоттинга. Суть этого метода заключается в сравнении количества каждого из белков в экспериментальном образце и в контрольных образцах с заранее известной концентрацией белка. Полученные результаты хорошо согласовывались с более ранними исследованиями. Отклонение было обнаружено только для белка SV2 (synaptic vesicle 2): в данном исследовании его количество было оценено как 12 копий на один синаптический пузырек, тогда как в других исследованиях — 1,7 и 5 копий.

Метод иммуноблоттинга основан на работе антител, которые распознают только целые белки, содержащие определенную последовательность аминокислот. При этом, если часть белков при приготовлении экспериментального образца (гомогената клеток) была разрушена и/или утратила необходимую аминокислотную последовательность, эта фракция белков не будет распознана. Именно поэтому иммуноблоттинг помог исследовать только около 40,5% общего содержания белков в синаптосомах. Для того, чтобы сделать оценку количества белков более точной, исследователи обратились к количественной масс-спектрометрии — к методу iBAQ (intensity-based absolute quantification, основанный на интенсивности полный подсчет). iBAQ вычисляет количество того или иного белка, учитывая все пептиды, которые могли появиться при его разрушении. Использование этого метода помогло увеличить долю проанализированных белков до 88,4%, при этом результаты хорошо коррелировали с данными, полученными при иммуноблоттинге.

Белковый состав пресинаптического окончания

Рисунок 2. Белковый состав пресинаптического окончания на примере синаптическо-го белка VAMP2. На рисунках в первом столбце изображены схемы препаратов, AZ — активная зона, ves — везикулы. Во втором и третьем столбцах — иммуногистохимическая окраска на белки VAMP2, маркер активной зоны (Bassoon или Bungarotoxin) и маркер синаптических пузырьков (Synaptophysin). В столбцах 4–6 — распределение белков VAMP2, Amphiphysin, Syntaxin 16 в синапсе. Более яркая окраска показывает большее количество белка интереса в данном участке синаптосомы.

Внутренним контролем служило то, что белки, образующие различные белковые комплексы (например, структурные белки везикулярных кластеров или белки активной зоны) были обнаружены в правильных соотношениях. Интересным и неожиданным открытием оказалось то, что количество белков, задействованных на разных этапах везикулярного цикла, разительно отличается. Количество белков комплекса SNARE (необходимого для слияния синаптического пузырька с синаптической мембраной) составляло 20–26 тысяч копий в одной синаптосоме, хотя для экзоцитоза одной везикулы достаточно 1–3 копий этого комплекса. При этом в одной синаптосоме всего около 4 тысяч молекул клатрина и около 2,3 тысяч молекул динамина. Для работы одного синаптического пузырька нужно 150–180 копий клатрина, а значит, всего клатрина, который присутствует в одном синапсе, хватит для экзоцитоза только 7% везикул этого синапса. Аналогичные расчеты для динамина показывают, что его количество достаточно для экзоцитоза всего 11% везикул. При этом количество белков, необходимых для эндоцитоза везикул (для замешения использованных пузырьков), было еще ниже — от 50 до 150 копий.

Для того, чтобы объяснить эти неожиданные результаты, ученые предположили, что для некоторых белков их точное расположение в месте использования может компенсировать недостаточное количество копий. В то же время, белки, количество которых оказалось удивительно большим, могут располагаться в синапсе очень рассеянно, поэтому в каждом конкретном месте синапса их концентрация будет низкой. Проверить эти предположения исследователям помогло использование флуоресцентной микроскопии высокого разрешения — метода STED-микроскопии [5] (Stimulated Emission Depletion Microscopy, микроскопия на основе подавления спонтанного испускания). В качестве контрольных образцов ученые использовали культуру нейронов гиппокампа и нервно-мышечное окончание взрослых крыс.

С помощью флуоресцентной микроскопии было изучено расположение 62 различных белков относительно активной зоны синапса и везикулярного кластера (скопления везикул в синаптическом окончании). Оказалось, что большинство белков распределено в объеме синапса более-менее равномерно (учитывая, что большинство белков активной зоны находится в активной зоне, а везикулярный кластер занимает почти весь объем синаптосомы). Таким образом, компенсация за счет особенностей распределения для белков синапса не характерна, а значит, вопрос о том, почему количество копий одних белков значительно больше количества копий других, остается открытым.

Полученные с помощью STED-микроскопии данные помогли исследователям построить трехмерную реконструкцию синаптического окончания, содержащую 60 различных белков (рис. 3). Все белки были смоделированы с атомарной точностью и расположены в характерных участках синапса, в соответствии с полученными экспериментальными результатами и литературными данными. Эта модель демонстрирует, что синаптическое окончание достаточно плотно заполнено везикулами, что, вероятно, препятствует свободному перемещению молекул и органелл. Возможно, что большое количество копий некоторых белков является эволюционным приспособлением к этой особенности строения синаптического окончания, помогающим обеспечить быстрое высвобождение медиатора в синаптическую щель. При этом образование новых везикул взамен использованных (эндоцитоз) может проходить гораздо медленнее без вреда для функционирования синапса. Это может объяснить небольшое количество копий эндоцитозных белков. При этом для того чтобы обеспечить нормальную работу синаптического окончания, нужно иметь большой запас готовых везикул, что и показывают результаты трехмерной реконструкции.

Трехмерная реконструкция синапса

Рисунок 3. Трехмерная реконструкция синапса. а — Срез через синаптическое окончание. Изображение содержит 60 белков, которые расположены в количестве копий и местоположениях, определенных с помощью микроскопии. б — Белки, указанные на реконструкции синапса. в — Увеличенное изображение активной зоны.

Полученные немецкими учеными результаты позволяют более подробно описать функционирование синаптического окончания и работу системы везикулярного транспорта. Стало понятно, что в условиях высокой плотности везикул, количество и расположение белков в синаптическом окончании должно строго контролироваться. Но на вопрос о том, каким образом контролируется количество копий каждого из белков, предстоит ответить новым исследованиям. Осуществляется ли этот контроль на уровне транскрипции, трансляции или транспорта этих белков от тела нейрона к синаптическому окончанию? Возможно, что важную роль в этом контроле играют сами синаптические везикулы, которые могут связывать свободные белки и, таким образом, снижать их концентрацию в цитоплазме. Более подробно предстоит изучить и особенности регуляции трансмембранных белков синаптических пузырьков, которым было уделено немного внимания в описанной работе.

За последние два десятилетия компьютерные технологии начали вносить значительный вклад во все естественные науки, в том числе и в биологию. Наряду с масштабным анализом больших объемов данных и компьютерным моделированием различных биологических процессов, все большие обороты набирает научная визуализация, которая является областью компьютерной графики. Если на ранних этапах развития этой области ученым удавалось создавать только трехмерные модели белков и некоторых других молекул, то сейчас вычислительные мощности позволяют моделировать сравнительно крупные объекты — большие молекулярные комплексы и целые вирусы.

Отличным примером результатов научной визуализации могут послужить работы российской компании Visual Science в их проекте «Зоопарк вирусов» — самые подробные на данный момент научно достоверные модели ВИЧ и вируса гриппа. Специалисты Visual Science объединяют данные огромного количества работ по молекулярной биологии, вирусологии и кристаллографии, мнения экспертов ведущих научных центров мира и результаты молекулярного моделирования, полученные научным отделом компании.

О другом примере детальной научной визуализации было рассказано в этой статье. Уже сейчас можно утверждать, что такие подробные трехмерные модели помогают ученым получить более общий взгляд на изучаемый объект, обнаружить новые закономерности в его строении и функционировании. Несомненно, что в ближайшем будущем область применения научной визуализации будет расширяться, помогая исследователям совершать новые открытия.

  1. Lodish H., Berk A., Zipursky S.L. et al. Molecular cell biology (4th Edition). New York: W.H. Freeman, 2000;
  2. Нобелевская премия по физиологии и медицине (2013): везикулярный транспорт;
  3. Молекулярная модель синаптической везикулы;
  4. B. G. Wilhelm, S. Mandad, S. Truckenbrodt, K. Krohnert, C. Schafer, et. al.. (2014). Composition of isolated synaptic boutons reveals the amounts of vesicle trafficking proteins. Science. 344, 1023-1028;
  5. Лучше один раз увидеть, или Микроскопия сверхвысокого разрешения;
  6. R. Metzler, J.-H. Jeon, A.G. Cherstvy. (2016). Non-Brownian diffusion in lipid membranes: Experiments and simulations. Biochimica et Biophysica Acta (BBA) — Biomembranes. 1858, 2451-2467.

Синаптические везикулы и их типы

Любой медиатор в пресинаптических нервных окончаниях содержится в везикулах.

Выделяют два типа везикул

1)мелкие везикулы (диаметром около 50 нм); они однородны по размерам и содержат классический медиатор.

2)крупные везикулы (диаметром около 100 нм); они неоднородны по размерам и содержат пептиды, которые помимо медиаторной функции могут модулировать синаптическую передачу

Синаптические везикулы и их типы

Все синаптические везикулы образуются в теле нервной клетки из эндоплазматического ретикулюма и цистерн аппарата Гольджи. Затем они транспортируются по аксону в нервные окончания.

Крупные везикулы заполняются медиатором (пептидом) непосредственно в соме нейрона.

Синаптические везикулы и их типы

Мелкие везикулы содержат АТФ, ионы, ферменты, а их мембрана имеет протоновые насосы. С участием этих насосов (главным образом, в пресинаптическом окончании) происходит наполнение мелких везикул медиатором, концентрация которого достигает в них высоких значений (около 100 ммоль/л).

Синаптические везикулы и их типы. Пулы

Мелкие везикулы в пресинаптическом окончании формируют два основных пула:

пул 1 пул 2.

Синаптические везикулы и их типы

Пул 1

– это относительно небольшой пул, готовый к немедленному экзоцитозу, т.е. это запас медиатора, способного освободиться в течение короткого промежутка времени.

Пул 1 содержит 10-50 везикул и при истощении пополняется в течение 5-12 секунд.

Синаптические везикулы и их типы

Вероятность освобождения кванта из пула 1 пропорциональна количеству везикул в пуле.

Размер пула 1 является постоянной величиной и определяет эффективность работы синапса.

Синаптические везикулы и их типы

Пул 2

– это относительно большой пул, везикулы которого не участвуют в секреции, но могут перемещаться по мере необходимости в пул 1, т.е. пул 2 – это мобилизационный запас медиатора, упакованного в везикулу. Везикулы этого пула с определенной скоростью могут пополнять запас доступного медиатора

Переход везикул из пула 2 в пул 1регулируется внутриклеточной концентрацией ионов кальция.

Пути освобождения медиатора из синапса.

В основе освобождения медиатора лежит процесс экзоцитоза

Существуют два механизма освобождения медиатора и всего содержимого везикулы в синаптическую щель.

Пути освобождения медиатора из синапса

Первый механизм – это классический экзоцитоз, при котором происходит полное слияние везикулы с пресинаптической мембраной. В этом случае все содержимое везикулы (медиатор, АТФ, ионы, ассоциированные белки и ферменты) оказывается в синаптической щели.

Второй механизм – это экзоцитоз, протекающий без полного слияния везикулы с пресинаптической мембраной и с частичным освобождением медиатора.

Пути освобождения медиатора из синапса

Он характеризуется формированием временной поры (канала) в пресинаптической мембране,.

За счет этой поры полость везикулы сообщается с синаптической щелью: при открытии поры (в момент контакта с пресинаптической мембраной).

При этом везикула при каждом контакте с пресинаптической мембраной теряет только часть своего содержимого.

При таком способе функционирования везикула может участвовать в экзоцитозе многократно.

Соседние файлы в предмете Нормальная физиология

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Понравилась статья? Поделить с друзьями:
  • Ведро стальное леруа
  • Ведро садовое леруа
  • Ведро с крышкой в леруа цена
  • Ведро пожарное конусное леруа
  • Ведро пластмассовое купить леруа мерлен