Ядро дендрит аксон функция

В теле человека бессчетное количество клеток, каждая из которых имеет собственную функцию. Среди них самые загадочные – нейроны, отвечающие за любое совершаемое нами действие. Попробуем разобраться как работают нейроны и в чем их предназначение.

Что такое нейрон (нейронные связи)

В переводе с греческого нейрон, или как его еще называют неврон, означает «волокно», «нерв». Нейрон – это специфическая структура в нашем организме, которая отвечает за передачу внутри него любой информации, в быту называемая нервной клеткой.

Нейроны работают при помощи электрических сигналов и способствуют обработке мозгом поступающей информации для дальнейшей координации производимых телом действий.

Эти клетки являются составляющей частью нервной системы человека, предназначение которой состоит в том, чтобы собрать все сигналы, поступающие из вне или от собственного организма и принять решение о необходимости того или иного действия. Именно нейроны помогают справиться с такой задачей.

Каждый из нейронов имеет связь с огромным количеством таких же клеток, создаётся своеобразная «паутина», которая называется нейронной сетью. Посредством данной связи в организме передаются электрические и химические импульсы, приводящие всю нервную систему в состояние покоя либо, наоборот, возбуждения.

К примеру, человек столкнулся с неким значимым событием. Возникает электрохимический толчок (импульс) нейронов, приводящий к возбуждению неровной системы. У человека начинает чаще биться сердце, потеют руки или возникают другие физиологические реакции.

Мы рождаемся с заданным количеством нейронов, но связи между ними еще не сформированы. Нейронная сеть строится постепенно в результате поступающих из вне импульсов. Новые толчки формируют новые нейронные пути, именно по ним в течение жизни побежит аналогичная информация. Мозг воспринимает индивидуальный опыт каждого человека и реагирует на него. К примеру, ребенок, схватился за горячий утюг и отдернул руку. Так у него появилась новая нейронная связь.

Стабильная нейронная сеть выстраивается у ребенка уже к двум годам. Удивительно, но уже с этого возраста те клетки, которые не используются, начинают ослабевать. Но это никак не мешает развитию интеллекта. Наоборот, ребенок познает мир через уже устоявшиеся нейронные связи, а не анализирует бесцельно все вокруг.

Даже у такого малыша есть практический опыт, позволяющий отсекать ненужные действия и стремиться к полезным. Поэтому, например, так сложно отучить ребенка от груди — у него сформировалась крепкая нейронная связь между приложением к материнскому молоку и удовольствию, безопасности, спокойствию.

Познание нового опыта на протяжении всей жизни приводит к отмиранию ненужных нейронных связей и формированию новых и полезных. Этот процесс оптимизирует головной мозг наиболее эффективным для нас образом. Например, люди, проживающие в жарких странах, учатся жить в определенном климате, а северянам нужен совсем другой опыт для выживания.

Сколько нейронов в мозге

Нервные клетки в составе головного мозга занимают порядка 10 процентов, остальные 90 процентов это астроциты и глиальные клетки, но их задача заключается лишь в обслуживании нейронов.

Подсчитать «вручную» численность клеток в головном мозге также сложно, как узнать количество звезд на небе.

Тем не менее ученые придумали сразу несколько способов для определения количества нейронов у человека:

  • Рассчитывается число нервных клеток на небольшой части мозга, а затем, количество умножается пропорционально полному объему. Исследователи исходят из постулата о том, что нейроны равномерно распределены в нашем мозге.
  • Происходит растворение всех мозговых клеток. В результате получается жидкость, в составе которой можно увидеть клеточные ядра. Их можно посчитать. При этом служебные клетки, о которых мы сказали выше, не учитываются.

В результате описанных экспериментов установлено, что число нейронов в головном мозге человека — 85 миллиардов единиц. Ранее, на протяжении многих веков считалось, что нервных клеток больше, порядка 100 миллиардов.

Строение нейрона

На рисунке приведено строение нейрона. Он состоит из основного тела и ядра. От клеточного тела идет ответвление многочисленных волокон, которые именуются дендритами.

Строение

Мощные и длинные дендриты называются аксонами, которые в действительности намного длиннее, чем на картинке. Их протяженность варьируется от нескольких миллиметров до более метра.

Аксоны играют ведущую роль в передаче информации между нейронами и обеспечивают работу всей нервной системы.

Место соединения дендрита (аксона) с другим нейроном называется синапсом. Дендриты при наличии раздражителей могут разрастись настолько сильно, что станут улавливать импульсы от других клеток, что приводит к образованию новых синаптических связей.

Синаптические связи играют существенную роль в формировании личности человека. Так, личность с устоявшимся позитивным опытом будет смотреть на жизнь с любовью и надеждой, человек, у которого нейронные связи с негативным зарядом, станет со временем пессимистом.

Виды нейронов и нейронных связей

Нейроны можно обнаружить в различных органах человека, а не исключительно в головном мозге. Большое их количество расположено в рецепторах (глаза, уши, язык, пальцы рук – органы чувств). Совокупность нервных клеток, которые пронизывают наш организм составляет основу периферической нервной системы. Выделим основные виды нейронов.

Вид нейронной клетки За что отвечает
Аффекторные Являются переносчиками информации от органов чувств в головной мозг. У этого вида нейронов самые длинные аксоны. Импульс из вне поступает по аксонам строго в определенный участок головного мозга, звук — в слуховой «отсек», запах – в «обонятельный» и т.д.
Промежуточные Промежуточные нервные клетки обрабатывают сведения, поступившие от аффекторных нейронов и передают ее периферическим органам и мышцам.
Эффекторные На заключительном этапе в дело вступают эфференты, которые доводят команду промежуточных нейронов до мышц и других органов тела.

Слаженная работа нейронов трех типов выглядит так: человек «слышит» запах шашлыка, нейрон передает информацию в соответствующий раздел мозга, мозг передает сигнал желудку, который выделяет желудочный сок, человек принимает решение «хочу есть» и бежит покупать шашлык. Упрощенно так это действует.

Самыми загадочными являются промежуточные нейроны. С одной стороны, их работа обуславливает наличие рефлекса: дотронулся до электричества – отдернул руку, полетела пыль –зажмурился. Однако, пока не объяснимо как обмен между волокнами рождает идеи, образы, мысли?

Единственное, что установили ученые, это тот факт, что любой вид мыслительной деятельности (чтение книг, рисование, решение математических задач) сопровождается особой активностью (вспышкой) нервных клеток определенного участка головного мозга.

Есть особая разновидность нейронов, которые именуются зеркальными. Их особенность заключается в том, что они не только приходят в возбуждение от внешних сигналов, но и начинают «шевелиться», наблюдая за действиями своих собратьев – других нейронов.

Функции нейронов

Без нейронов невозможна работа организма человека. Мы увидели, что эти наноклетки отвечают буквально за каждое наше движение, любой поступок. Выполняемые ими функции до настоящего времени в полной мере не изучены и не определены.

Существует несколько классификаций функций нейронов. Мы остановимся на общепринятой в научном мире.

Функция распространения информации

Данная функция:

  • является основной;
  • изучена лучше остальных.

Суть ее в том, что нейронами обрабатываются и переносятся в головной мозг все импульсы, которые поступают из окружающего мира или собственного тела. Далее происходит их обработка, подобно тому, как работает поисковик в браузере.

По результатам сканирования сведений из вне, головной мозг в форме обратной связи передает обработанную информацию к органам чувств или мышцам.

Мы не подозреваем, что в нашем теле происходит ежесекундная доставка и переработка информации, не только в голове и на уровне периферической нервной системы.

До настоящего времени создать искусственный интеллект, который бы приблизился к работе нейронных сетей человека, не удалось. У каждого из 85 миллиардов нейронов имеется, как минимум, 10 тысяч обусловленных опытом связей, и все они работают на передачу и обработку информации.

Функция аккумуляции знаний (сохранения опыта)

Человек обладает памятью, возможностью понимать суть вещей, явлений и действий, которые он единожды или многократно повторял. За формирование памяти отвечают именно нейронные клетки, точнее нейротрансмиттеры, связующие звенья между соседними нейронами.

Таким образом, за память отвечает не какая-то отдельная часть мозга, а маленькие белковые мостики между клетками. Человек может потерять память, когда произошло крушение этих нервных связей.

Функция интеграции

Данная функция позволяет взаимодействовать между собой отдельным долям головного мозга. Как мы уже сказали, сигналы от разных органов чувств поступают в разные отделы мозга.

Нейроны посредством «вспышек» активности передают и принимают импульсы в разных частях мозга. Так происходит процесс появления мыслей, эмоций и чувств. Чем больше таких разноплановых связей, тем эффективнее человек мыслит. Если человек способен к размышлениям и аналитике в определенном направлении, то он будет хорошо соображать и в другом вопросе.

Функция производства белков

Нейроны – настолько полезные клетки, что не ограничиваются только передаточными функциями. Нервные клетки вырабатывают необходимые для жизни человека белки. Опять же ключевую роль в производстве белков имеют нейротрансмиттеры, которые отвечают за память.

Всего в невронах индуцируется порядка 80 белков, вот основные из них, влияющие на самочувствие человека:

  • Серотонин – вещество, вызывающее радость и удовольствие.
  • Допамин – ведущий источник бодрости и счастья для человека. Активизирует физическую активность, помогает проснуться, переизбыток может привести к состоянию эйфории.
  • Норадреналин – это «плохой» гормон, вызывающий приступы ярости и гнева. Наряду с кортизолом его называют гормоном стресса.
  • Глутамат – вещество, отвечающие за хранение памяти.

Прекращение выработки белков или их выпуск в недостаточном количестве способны привести к тяжелым заболеваниям.

Восстанавливаются ли нервные клетки

При нормальном состоянии организма нейроны могут жить и функционировать очень долго. К сожалению, случается так, что они начинают массово погибать. Причин разрушения нервных волокон может быть много, но до конца механизм их деструкции не изучен.

Установлено, что нервные клетки погибают из-за гипоксии (кислородное голодание). Нейронные сети рушатся при отдельных травмах головного мозга, человек теряет память или утрачивает способность к хранению информации. В этом случае сами нейроны сохранены, но теряется их передаточная функция.

Отсутствие допамина ведет к развитию болезни Паркинсона, а его переизбыток является причиной шизофрении. Почему прекращается выработка белка не известно, спусковой механизм не выявлен.

Гибель нервных клеток происходит при алкоголизации личности. Алкоголик со временем может совершенно деградировать и утратить вкус к жизни.

Формирование нервных клеток происходит при рождении. Долгое время ученые полагали, что со временем нейроны отмирают. Поэтому с возрастом человек утрачивает способность накапливать информацию, хуже соображает. Нарушение функции по выработке допамина и серотонина связывается с наличием практически у всех пожилых людей депрессивных состояний.

Гибель нейронов, действительно неизбежна, в год исчезает примерно 1 процент от их количества. Но есть и хорошие новости. Последние исследования показали, что в коре головного мозга есть особенный участок, именуемый гипокаммом. Именно в нем генерируются новые чистые нейроны. Подсчитано примерное количество генерируемых ежедневно нервных клеток – 1400.

В науке обозначилось новое понятие «нейропластичность», обозначающее возможность мозга регенерироваться и перестраиваться. Но есть одна тонкость: новые нейроны еще не имеют никакого опыта и наработанных связей. Поэтому с возрастом или после заболевания мозг нужно тренировать, как и все иные мышцы тела: получать новые знания, анализировать происходящие события и явления.

Подобно тому, как мы усиливаем бицепс при помощи гантели, активизировать процесс включения новых нервных клеток можно следующими способами:

  • изучение новых сфер знаний, которые ранее были не нужны или не интересны. К примеру, математику можно начать изучать живопись, а юристу – основы физики.
  • через постановку сложных задач и поиск их решения;
  • составлением планов деятельности, которые включают в себя множество исходных данных.

Механизм возрождения прост. У нас имеются совершенно не задействованные новые клетки, которые нужно заставить работать, а сделать это можно лишь путем постановки новых задач и изучения неизвестных предметных сфер.

  Вся информация взята из открытых источников.

Если вы считаете, что ваши авторские права нарушены, пожалуйста,
напишите в чате на этом сайте, приложив скан документа подтверждающего ваше право.
Мы убедимся в этом и сразу снимем публикацию.

Нейрон (от
греч. neuron — нерв) — это структурно-функциональная
единица нервной системы. Эта клетка
имеет сложное строение, высоко
специализирована и по структуре содержит
ядро, тело клетки и отростки. В организме
человека насчитывается более 100 миллиардов
нейронов.

Функции
нейронов
 Как
и другие клетки, нейроны должны
обеспечивать поддержание собственной
структуры и функций, приспосабливаться
к изменяющимся условиям и оказывать
регулирующее влияние на соседние клетки.
Однако основная функция нейронов — это
переработка информации: получение,
проведение и передача другим клеткам.
Получение информации происходит через
синапсы с рецепторами сенсорных органов
или другими нейронами, или непосредственно
из внешней среды с помощью специализированных
дендритов. Проведение информации
происходит по аксонам, передача — через
синапсы.

Строение
нейрона

Тело
клетки
 Тело
нервной клетки состоит из протоплазмы
(цитоплазмы и ядра), снаружи ограничена
мембраной из двойного слоя липидов
(билипидный слой). Липиды состоят из
гидрофильных головок и гидрофобных
хвостов, расположены гидрофобными
хвостами друг к другу, образуя гидрофобный
слой, который пропускает только
жирорастворимые вещества (напр. кислород
и углекислый газ). На мембране находятся
белки: на поверхности (в форме глобул),
на которых можно наблюдать наросты
полисахаридов (гликокаликс), благодаря
которым клетка воспринимает внешнее
раздражение, и интегральные белки,
пронизывающие мембрану насквозь, в них
находятся ионные каналы.

Нейрон
состоит из тела диаметром от 3 до 100 мкм,
содержащего ядро (с большим количеством
ядерных пор) и органеллы (в том числе
сильно развитый шероховатый ЭПР с
активными рибосомами, аппарат Гольджи),
а также из отростков. Выделяют два вида
отростков: дендриты и аксон. Нейрон
имеет развитый цитоскелет, проникающий
в его отростки. Цитоскелет поддерживает
форму клетки, его нити служат «рельсами»
для транспорта органелл и упакованных
в мембранные пузырьки веществ (например,
нейромедиаторов). В теле нейрона
выявляется развитый синтетический
аппарат, гранулярная ЭПС нейрона
окрашивается базофильно и известна под
названием «тигроид». Тигроид проникает
в начальные отделы дендритов, но
располагается на заметном расстоянии
от начала аксона, что служит гистологическим
признаком аксона. Различается антероградный
(от тела) и ретроградный (к телу) аксонный
транспорт.

Дендриты
и аксон

Аксон
— обычно длинный отросток, приспособленный
для проведения возбуждения от тела
нейрона. Дендриты — как правило, короткие
и сильно разветвлённые отростки, служащие
главным местом образования влияющих
на нейрон возбуждающих и тормозных
синапсов (разные нейроны имеют различное
соотношение длины аксона и дендритов).
Нейрон может иметь несколько дендритов
и обычно только один аксон. Один нейрон
может иметь связи со многими (до 20-и
тысяч) другими нейронами. Дендриты
делятся дихотомически, аксоны же дают
коллатерали. В узлах ветвления обычно
сосредоточены митохондрии. Дендриты
не имеют миелиновой оболочки, аксоны
же могут её иметь. Местом генерации
возбуждения у большинства нейронов
является аксонный холмик — образование
в месте отхождения аксона от тела. У
всех нейронов эта зона называется
триггерной.

Синапс Синапс
— место контакта между двумя нейронами
или между нейроном и получающей сигнал
эффекторной клеткой. Служит для передачи
нервного импульса между двумя клетками,
причём в ходе синаптической передачи
амплитуда и частота сигнала могут
регулироваться. Одни синапсы вызывают
деполяризацию нейрона, другие —
гиперполяризацию; первые являются
возбуждающими, вторые — тормозящими.
Обычно для возбуждения нейрона необходимо
раздражение от нескольких возбуждающих
синапсов.

Структурная
классификация нейронов

На
основании числа и расположения дендритов
и аксона нейроны делятся на безаксонные,
униполярные нейроны, псевдоуниполярные
нейроны, биполярные нейроны и мультиполярные
(много дендритных стволов, обычно
эфферентные) нейроны.

Безаксонные
нейроны
 —
небольшие клетки, сгруппированы вблизи
спинного мозга в межпозвоночных ганглиях,
не имеющие анатомических признаков
разделения отростков на дендриты и
аксоны. Все отростки у клетки очень
похожи. Функциональное назначение
безаксонных нейронов слабо изучено.

Униполярные
нейроны
 —
нейроны с одним отростком, присутствуют,
например в сенсорном ядре тройничного
нерва в среднем мозге.

Биполярные
нейроны
 —
нейроны, имеющие один аксон и один
дендрит, расположенные в специализированных
сенсорных органах — сетчатке глаза,
обонятельном эпителии и луковице,
слуховом и вестибулярном ганглиях;

Мультиполярные
нейроны
 —
Нейроны с одним аксоном и несколькими
дендритами. Данный вид нервных клеток
преобладает в центральной нервной
системе

Псевдоуниполярные
нейроны
 —
являются уникальными в своём роде. От
тела отходит один отросток, который
сразу же Т-образно делится. Весь этот
единый тракт покрыт миелиновой оболочкой
и структурно представляет собой аксон,
хотя по одной из ветвей возбуждение
идёт не от, а к телу нейрона. Структурно
дендритами являются разветвления на
конце этого (периферического) отростка.
Триггерной зоной является начало этого
разветвления (т. е. находится вне тела
клетки). Такие нейроны встречаются в
спинальных ганглиях.

Функциональная
классификация нейронов
 По
положению в рефлекторной дуге различают
афферентные нейроны (чувствительные
нейроны), эфферентные нейроны (часть из
них называется двигательными нейронами,
иногда это не очень точное название
распространяется на всю группу эфферентов)
и интернейроны (вставочные нейроны).

Афферентные
нейроны
 (чувствительный,
сенсорный или рецепторный). К нейронам
данного типа относятся первичные клетки
органов чувств и псевдоуниполярные
клетки, у которых дендриты имеют свободные
окончания.

Эфферентные
нейроны
 (эффекторный,
двигательный или моторный). К нейронам
данного типа относятся конечные нейроны
— ультиматные и предпоследние –
неультиматные.

Ассоциативные
нейроны
 (вставочные
или интернейроны) — эта группа нейронов
осуществляет связь между эфферентными
и афферентными, их делят на комиссуральные
и проекционные (головной мозг).

Морфологическая
классификация нейронов
 Морфологическое
строение нейронов многообразно. В связи
с этим при классификации нейронов
применяют несколько принципов:

учитывают
размеры и форму тела нейрона,

количество
и характер ветвления отростков,

длину
нейрона и наличие специализированные
оболочки.

По
форме клетки, нейроны могут быть
сферическими, зернистыми, звездчатыми,
пирамидными, грушевидными, веретеновидными,
неправильными и т. д. Размер тела нейрона
варьирует от 5 мкм у малых зернистых
клеток до 120-150 мкм у гигантских пирамидных
нейронов. Длина нейрона у человека
составляет от 150 мкм до 120 см. По количеству
отростков выделяют следующие
морфологические типы нейронов: —
униполярные (с одним отростком) нейроциты,
присутствующие, например, в сенсорном
ядре тройничного нерва в среднем мозге;
— псевдоуниполярные клетки, сгруппированные
вблизи спинного мозга в межпозвоночных
ганглиях; — биполярные нейроны (имеют
один аксон и один дендрит), расположенные
в специализированных сенсорных органах
— сетчатке глаза, обонятельном эпителии
и луковице, слуховом и вестибулярном
ганглиях; — мультиполярные нейроны
(имеют один аксон и несколько дендритов),
преобладающие в ЦНС.

Развитие
и рост нейрона
 Нейрон
развивается из небольшой клетки —
предшественницы, которая перестаёт
делиться ещё до того, как выпустит свои
отростки. (Однако, вопрос о делении
нейронов в настоящее время остаётся
дискуссионным.) Как правило, первым
начинает расти аксон, а дендриты
образуются позже. На конце развивающегося
отростка нервной клетки появляется
утолщение неправильной формы, которое,
видимо, и прокладывает путь через
окружающую ткань. Это утолщение называется
конусом роста нервной клетки. Он состоит
из уплощенной части отростка нервной
клетки с множеством тонких шипиков.
Микрошипики имеют толщину от 0,1 до 0,2
мкм и могут достигать 50 мкм в длину,
широкая и плоская область конуса роста
имеет ширину и длину около 5 мкм, хотя
форма её может изменяться. Промежутки
между микрошипиками конуса роста покрыты
складчатой мембраной. Микрошипики
находятся в постоянном движении —
некоторые втягиваются в конус роста,
другие удлиняются, отклоняются в разные
стороны, прикасаются к субстрату и могут
прилипать к нему. Конус роста заполнен
мелкими, иногда соединёнными друг с
другом, мембранными пузырьками
неправильной формы. Непосредственно
под складчатыми участками мембраны и
в шипиках находится плотная масса
перепутанных актиновых филаментов.
Конус роста содержит также митохондрии,
микротрубочки и нейрофиламенты, имеющиеся
в теле нейрона. Вероятно, микротрубочки
и нейрофиламенты удлиняются главным
образом за счёт добавления вновь
синтезированных субъединиц у основания
отростка нейрона. Они продвигаются со
скоростью около миллиметра в сутки, что
соответствует скорости медленного
аксонного транспорта в зрелом нейроне.

Поскольку
примерно такова и средняя скорость
продвижения конуса роста, возможно, что
во время роста отростка нейрона в его
дальнем конце не происходит ни сборки,
ни разрушения микротрубочек и
нейрофиламентов. Новый мембранный
материал добавляется, видимо, у окончания.
Конус роста — это область быстрого
экзоцитоза и эндоцитоза, о чём
свидетельствует множество находящихся
здесь пузырьков. Мелкие мембранные
пузырьки переносятся по отростку нейрона
от тела клетки к конусу роста с потоком
быстрого аксонного транспорта. Мембранный
материал, видимо, синтезируется в теле
нейрона, переносится к конусу роста в
виде пузырьков и включается здесь в
плазматическую мембрану путём экзоцитоза,
удлиняя таким образом отросток нервной
клетки. Росту аксонов и дендритов обычно
предшествует фаза миграции нейронов,
когда незрелые нейроны расселяются и
находят себе постоянное место.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Введение в нейробиологию

7. Нейроны

Основными структурными особенностями нейронов являются перикария, дендриты и аксоны Нейроны содержат те же самые внутриклеточные компоненты, что и другие клетки Молекулярные маркеры могут использоваться для идентификации нейронов

Нейро́н, или невро́н (от др.-греч. νεῦρον — волокно, нерв) — структурно-функциональная единица нервной системы. Нейрон — электрически возбудимая клетка, которая обрабатывает, хранит и передает информацию с помощью электрических и химических сигналов. Нейрон имеет сложное строение и узкую специализацию. Клетка содержит ядро, тело клетки и отростки (дендриты и аксоны). В головном мозге человека насчитывается около 85—86 миллиардов нейронов[1][2]. Нейроны могут соединяться один с другим, формируя биологические нейронные сети. Нейроны разделяют на рецепторные, эффекторные и вставочные.

Сложность и многообразие функций нервной системы определяются взаимодействием между нейронами. Это взаимодействие представляет собой набор различных сигналов, передаваемых между нейронами или мышцами и железами. Сигналы испускаются и распространяются с помощью ионов. Ионы генерируют электрический заряд (потенциал действия), который движется по телу нейрона.

Важное значение для науки имело изобретение метода Гольджи в 1873 году, позволявшего окрашивать отдельные нейроны[3][4]. Термин «нейрон» (нем. Neuron) для обозначения нервных клеток введён Г. В. Вальдейером в 1891 году[5][6].

Строение нейронов

Нейрон состоит из тела диаметром от 3 до 130 мкм. Тело содержит ядро (с большим количеством ядерных пор) и органеллы (в том числе сильно развитый шероховатый ЭПР с активными рибосомамиаппарат Гольджи), а также из отростков. Выделяют два вида отростков: дендриты и аксон. Нейрон имеет развитый цитоскелет, который проникает в его отростки. Цитоскелет поддерживает форму клетки, его нити служат «рельсами» для транспорта органелл и упакованных в мембранные пузырьки веществ (например, нейромедиаторов). Цитоскелет нейрона состоит из фибрилл разного диаметра: Микротрубочки (Д = 20—30 нм) — состоят из белка тубулина и тянутся от нейрона по аксону, вплоть до нервных окончаний. Нейрофиламенты (Д = 10 нм) — вместе с микротрубочками обеспечивают внутриклеточный транспорт веществ. Микрофиламенты (Д = 5 нм) — состоят из белков актина и миозина, особенно выражены в растущих нервных отростках и в нейроглии.(Нейроглия, или просто глия (от др.-греч. νεῦρον — волокно, нерв + γλία — клей), — совокупность вспомогательных клеток нервной ткани. Составляет около 40 % объёма ЦНС. Количество глиальных клеток в среднем в 10—50 раз больше, чем нейронов).

В теле нейрона выявляется развитый синтетический аппарат, гранулярная ЭПС нейрона окрашивается базофильно и известна под названием «тигроид». Тигроид проникает в начальные отделы дендритов, но располагается на заметном расстоянии от начала аксона, что служит гистологическим признаком аксона. Нейроны различаются по форме, числу отростков и функциям. В зависимости от функции выделяют чувствительные, эффекторные (двигательные, секреторные) и вставочные. Чувствительные нейроны воспринимают раздражения, преобразуют их в нервные импульсы и передают в мозг. Эффекторные (от лат. effectus — действие) — вырабатывают и посылают команды к рабочим органам. Вставочные — осуществляют связь между чувствительными и двигательными нейронами, участвуют в обработке информации и выработке команд.

Различается антероградный (от тела) и ретроградный (к телу) аксонный транспорт.

Аксоны и дендриты

Аксон — длинный отросток нейрона. Приспособлен для проведения возбуждения и информации от тела нейрона к нейрону или от нейрона к исполнительному органу. Дендриты — короткие и сильно разветвлённые отростки нейрона, служащие главным местом образования влияющих на нейрон возбуждающих и тормозных синапсов (разные нейроны имеют различное соотношение длины аксона и дендритов), и которые передают возбуждение к телу нейрона. Нейрон может иметь несколько дендритов и обычно только один аксон. Один нейрон может иметь связи со многими (до 20 тысяч) другими нейронами.

Дендриты делятся дихотомически, аксоны же дают коллатерали. В узлах ветвления обычно сосредоточены митохондрии.

Дендриты не имеют миелиновой оболочки, аксоны же могут её иметь. Местом генерации возбуждения у большинства нейронов является аксонный холмик — образование в месте отхождения аксона от тела. У всех нейронов эта зона называется триггерной.

Си́напс (греч. σύναψις, от συνάπτειν — обнимать, обхватывать, пожимать руку) — место контакта между двумя нейронами или между нейроном и получающей сигнал эффекторнойклеткой. Служит для передачи нервного импульса между двумя клетками, причём в ходе синаптической передачи амплитуда и частота сигнала могут регулироваться. Одни синапсы вызывают деполяризацию нейрона и являются возбуждающими, другие — гиперполяризацию и являются тормозными. Обычно для возбуждения нейрона необходимо раздражение от нескольких возбуждающих синапсов.

Термин был введён английским физиологом Чарльзом Шеррингтоном в 1897 г.

Понравилась статья? Поделить с друзьями:
  • Ядра чугунные для бани леруа мерлен
  • Является ли партнером халвы мегастрой
  • Является ли партнером халвы магазин леруа мерлен
  • Является ли магазин бауцентр партнером карты халва
  • Является ли леруа мерлен партнером халвы совкомбанк